新增整合上传功能,支持PDF和TXT文件的上传及处理,包括图片链接的提取与上传

This commit is contained in:
2025-07-21 23:08:02 +08:00
parent ca92e349e0
commit 4c1e031bb5

297
integrated_upload.py Normal file
View File

@@ -0,0 +1,297 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
整合上传功能
1. 上传PDF到MinIO并获取document
2. 处理TXT的chunk
3. 处理chunk中的图片链接上传图片到MinIO删除chunk中的图片链接
4. 上传chunk并获取chunk_id
5. 根据chunk_id更新Elasticsearch中的img_id
"""
import os
import re
from pathlib import Path
import sys
# 添加当前目录到Python路径
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ragflow_sdk import RAGFlow
from minio import Minio
from minio.error import S3Error
from elasticsearch import Elasticsearch
import chunk_operations
from markdown_image2minio import get_minio_client, upload_file_to_minio
# 配置
MINIO_BUCKET = "pdf-documents"
ELASTICSEARCH_HOST = "192.168.107.165"
ELASTICSEARCH_PORT = 1200
# RAGFlow配置
API_KEY = "ragflow-MyMjM2ODE2NThlMTExZjBiMzJlNzY5Mj"
BASE_URL = "http://127.0.0.1:8099"
class IntegratedUploader:
def __init__(self, tenant_id, dataset_id):
self.tenant_id = tenant_id
self.dataset_id = dataset_id
self.ragflow = RAGFlow(api_key=API_KEY, base_url=BASE_URL)
self.minio_client = get_minio_client()
self.es = Elasticsearch(
[{'host': ELASTICSEARCH_HOST, 'port': ELASTICSEARCH_PORT, 'scheme': 'http'}],
basic_auth=('elastic', 'infini_rag_flow')
)
# 确保MinIO bucket存在
self._ensure_bucket_exists()
def _ensure_bucket_exists(self):
"""确保MinIO bucket存在"""
try:
if not self.minio_client.bucket_exists(MINIO_BUCKET):
self.minio_client.make_bucket(MINIO_BUCKET)
print(f"Bucket '{MINIO_BUCKET}' created")
except S3Error as e:
print(f"MinIO bucket error: {e}")
def upload_pdf_to_minio(self, pdf_path):
"""上传PDF到MinIO并返回URL"""
if not os.path.exists(pdf_path):
raise FileNotFoundError(f"PDF文件不存在: {pdf_path}")
filename = os.path.basename(pdf_path)
object_name = f"{self.dataset_id}/{filename}"
try:
upload_file_to_minio(self.minio_client, MINIO_BUCKET, object_name, pdf_path)
url = f"http://127.0.0.1:9000/{MINIO_BUCKET}/{object_name}"
print(f"PDF已上传到MinIO: {url}")
return url
except Exception as e:
print(f"上传PDF失败: {e}")
raise
def get_or_create_document(self, pdf_path, display_name=None):
"""获取或创建文档对象"""
if display_name is None:
display_name = os.path.basename(pdf_path)
try:
datasets = self.ragflow.list_datasets()
dataset = None
for ds in datasets:
if ds.id == self.dataset_id:
dataset = ds
break
if not dataset:
raise ValueError(f"数据集 {self.dataset_id} 不存在")
# 检查文档是否已存在
try:
documents = dataset.list_documents(name=display_name)
if documents:
print(f"文档已存在: {display_name}")
return documents[0]
except Exception:
pass
# 上传PDF文档
print(f"上传文档: {display_name}")
with open(pdf_path, "rb") as f:
blob = f.read()
dataset.upload_documents([{"display_name": display_name, "blob": blob}])
documents = dataset.list_documents(name=display_name)
return documents[0]
except Exception as e:
print(f"获取/创建文档失败: {e}")
raise
def extract_images_from_chunk(self, content):
"""从chunk内容中提取图片链接"""
img_pattern = r'!\[.*?\]\((.*?)\)'
return re.findall(img_pattern, content)
def remove_images_from_content(self, content):
"""从内容中移除图片链接"""
# 移除markdown图片语法 ![alt](url)
content = re.sub(r'!\[.*?\]\(.*?\)', '', content)
# 清理多余的空行
content = re.sub(r'\n\s*\n\s*\n', '\n\n', content)
return content.strip()
def upload_chunk_images(self, images, base_path, chunk_index):
"""上传chunk中的图片到MinIO"""
uploaded_images = []
img_ids = []
for idx, img_path in enumerate(images):
try:
# 处理相对路径
if not os.path.isabs(img_path):
img_abs_path = os.path.join(os.path.dirname(base_path), img_path)
else:
img_abs_path = img_path
if not os.path.exists(img_abs_path):
print(f"图片文件不存在: {img_abs_path}")
continue
# 生成图片ID和对象名称
img_id = f"{self.dataset_id}-{chunk_index:04d}-{idx:03d}"
filename = os.path.basename(img_abs_path)
ext = os.path.splitext(filename)[1] or ".jpg"
object_name = f"{self.dataset_id}/images/chunk_{chunk_index:04d}/img_{idx:03d}{ext}"
# 上传到MinIO
upload_file_to_minio(self.minio_client, MINIO_BUCKET, object_name, img_abs_path)
url = f"http://127.0.0.1:9000/{MINIO_BUCKET}/{object_name}"
uploaded_images.append({
'original_path': img_path,
'img_id': img_id,
'url': url,
'object_name': object_name
})
img_ids.append(img_id)
print(f"图片已上传: {img_path} -> {url}")
except Exception as e:
print(f"上传图片失败 {img_path}: {e}")
continue
return uploaded_images, img_ids
def process_txt_chunks(self, txt_path, document):
"""处理TXT文件中的chunks"""
if not os.path.exists(txt_path):
raise FileNotFoundError(f"TXT文件不存在: {txt_path}")
try:
with open(txt_path, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
print(f"读取TXT文件失败: {e}")
raise
# 按段落分割内容
chunks = content.split('\n\n')
processed_chunks = []
for chunk_index, chunk_content in enumerate(chunks):
if not chunk_content.strip():
continue
print(f"\n处理第 {chunk_index + 1} 个chunk...")
print(f"原始内容长度: {len(chunk_content)} 字符")
# 提取图片
images = self.extract_images_from_chunk(chunk_content)
print(f"找到 {len(images)} 张图片")
# 上传图片并获取img_ids
uploaded_images, img_ids = self.upload_chunk_images(
images, txt_path, chunk_index
)
# 移除图片链接后的内容
clean_content = self.remove_images_from_content(chunk_content)
print(f"清理后内容长度: {len(clean_content)} 字符")
if clean_content.strip():
try:
# 上传chunk
chunk = document.add_chunk(content=clean_content)
chunk_id = chunk.id
print(f"Chunk已添加ID: {chunk_id}")
# 如果有图片更新Elasticsearch中的img_id
if img_ids:
img_id_str = ",".join(img_ids)
result = chunk_operations.update_img_id_in_elasticsearch(
self.tenant_id, document.id, chunk_id, img_id_str
)
if result["code"] == 0:
print(f"Elasticsearch img_id已更新: {img_id_str}")
else:
print(f"更新Elasticsearch失败: {result['message']}")
processed_chunks.append({
'chunk_id': chunk_id,
'content': clean_content,
'images': uploaded_images,
'img_ids': img_ids
})
except Exception as e:
print(f"添加chunk失败: {e}")
continue
else:
print("跳过空chunk")
return processed_chunks
def upload_pdf_and_process_txt(self, pdf_path, txt_path):
"""完整的上传和处理流程"""
print("=== 开始整合上传流程 ===")
try:
# 1. 上传PDF到MinIO
pdf_url = self.upload_pdf_to_minio(pdf_path)
print(f"PDF URL: {pdf_url}")
# 2. 获取或创建文档
document = self.get_or_create_document(pdf_path)
print(f"文档ID: {document.id}")
# 3. 处理TXT chunks
processed_chunks = self.process_txt_chunks(txt_path, document)
print(f"处理完成,共 {len(processed_chunks)} 个chunks")
return {
'success': True,
'document_id': document.id,
'pdf_url': pdf_url,
'chunks': processed_chunks
}
except Exception as e:
print(f"整合上传失败: {e}")
return {
'success': False,
'error': str(e)
}
def main():
"""主函数 - 示例用法"""
# 配置参数
tenant_id = "d669205e57a211f0b9e7324e7f243034"
dataset_id = "10345832587311f0919f3a2728512a4b"
# 文件路径
pdf_path = r"G:\11\22\规范\example.pdf"
txt_path = r"G:\11\22\规范\example.txt"
# 创建上传器实例
uploader = IntegratedUploader(tenant_id, dataset_id)
# 执行上传和处理
result = uploader.upload_pdf_and_process_txt(pdf_path, txt_path)
if result['success']:
print("\n=== 上传成功 ===")
print(f"文档ID: {result['document_id']}")
print(f"PDF URL: {result['pdf_url']}")
print(f"处理chunks数: {len(result['chunks'])}")
for chunk in result['chunks']:
print(f" - Chunk ID: {chunk['chunk_id']}, 图片数: {len(chunk['images'])}")
else:
print(f"\n上传失败: {result['error']}")
if __name__ == "__main__":
main()