Compare commits

...

2 Commits

2 changed files with 307 additions and 15 deletions

View File

@@ -23,10 +23,11 @@ def convert_to_alpaca_format(input_file, output_file):
] ]
} }
""" """
choice_text=", A. quant-ph\nB. physics.chem-ph\nC. physics.atom-ph\nD. cond-mat.soft\nE. cs.RO\nF. cs.CL\nG. cs.SE\nH. cs.IR\nI. hep-th\nJ. hep-ph\nK. physics.optics\nL. cs.AI\nM. cs.CV\nN. nucl-th\nO. astro-ph\nP. math.PR\nQ. cs.OS\nR. eess.SP\nS. math.OC\nT. math.DS\nU. math.DG\nV. math.MP\nW. cs.MM\nX. stat.ME\nY. math.CO\nZ. cs.NE"
print(f"转换数据: {input_file} -> {output_file}") print(f"转换数据: {input_file} -> {output_file}")
converted_data = [] converted_data = []
with open(input_file, "r", encoding="utf-8") as f: with open(input_file, "r", encoding="utf-8-sig") as f:
csv_reader = csv.DictReader(f) csv_reader = csv.DictReader(f)
for row in csv_reader: for row in csv_reader:
try: try:
@@ -44,7 +45,7 @@ def convert_to_alpaca_format(input_file, output_file):
"system": "你是个优秀的论文分类师", "system": "你是个优秀的论文分类师",
"conversation": [ "conversation": [
{ {
"human": row["question"], "human": row["question"]+choice_text,
"assistant": row["answer"] "assistant": row["answer"]
} }
] ]
@@ -62,19 +63,8 @@ def convert_to_alpaca_format(input_file, output_file):
print(f"转换完成! 共转换 {len(converted_data)} 条数据") print(f"转换完成! 共转换 {len(converted_data)} 条数据")
if __name__ == "__main__": if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
# parser.add_argument(
# "--input",
# type=str,
# required=True,
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
# )
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
# args = parser.parse_args() input_file = "G:\\11\\data-prepare\\eval_oc_data-26gai.csv"
output_file = "G:\\11\\data-prepare\\newformat_sft_test_data--swift-sft-26.jsonl" # 输出文件路径
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
input_file = "newformat_sft_test_data.csv"
output_file = "newformat_sft_test_data--swift-sft.jsonl" # 输出文件路径
convert_to_alpaca_format(input_file, output_file) convert_to_alpaca_format(input_file, output_file)

View File

@@ -0,0 +1,302 @@
import json
import os
import argparse
import random
def extract_title_author_and_abstract(content_text):
"""
content_text: 格式示例"Based on the title 'The Quantum Primordial Black Holes, Dimensionless Small Parameter, Inflationary Cosmology and Non-Gaussianity', authors 'Alexander Shalyt-Margolin', and abstract 'In the present work consideration is given to the primordial black holes ({\\bf pbhs}) in the Schwarzschild-de Sitter Metric with small mass (ultralight) in the preinflationary epoch. Within the scope of natural assumptions, it has been shown that the quantum-gravitational corrections ({\\bf qgcs}) to the characteristics of such black holes can contribute to all the cosmological parameters, shifting them compared with the semiclassical consideration. These contributions are determined by a series expansion in terms of a small parameter dependent on the hole mass (radius). For this pattern different cases have been considered (stationary, black hole evaporation...). It has been demonstrated that involvement of ({\\bf qgcs}) leads to a higher probability for the occurrence of such {\\bf pbhs}. Besides, high-energy deformations of Friedmann Equations created on the basis of these corrections have been derived for different patterns. In the last section of this work it is introduced a study into the contributions generated by the above-mentioned {\\bf qgcs} in inflationary cosmological perturbations. Besides, it has been shown that non-Gaussianity of these perturbations is higher as compared to the semi-classical pattern.', please determine the scientific category of this paper. Additional info: 35 pages, Latex ,
A. quant-ph\nB. physics.chem-ph\nC. physics.atom-ph\nD. cond-mat.soft\nE. cs.RO\nF. cs.CL\nG. cs.SE\nH. cs.IR\nI. hep-th\nJ. hep-ph\nK. physics.optics\nL. cs.AI\nM. cs.CV\nN. nucl-th\nO. astro-ph\nP. math.PR\nQ. cs.OS\nR. eess.SP\nS. math.OC\nT. math.DS\nU. math.DG\nV. math.MP\nW. cs.MM\nX. stat.ME\nY. math.CO\nZ. cs.NE", "assistant": "I"}]}
"""
#content_text.split("',")
parts = content_text.split("',")
title = parts[0].split("'")[1].strip()
authors = parts[1].split("'")[1].strip()
abstract = parts[2].split("'")[1].strip()
# # for part in parts:
# # print(part)
# print(title)
# print("----------------------------------------------------------------------------------------------------------")
# print(authors)
# print("----------------------------------------------------------------------------------------------------------")
# print(abstract)
# print("----------------------------------------------------------------------------------------------------------")
return {"title": title, "authors": authors, "abstract": abstract}
def convert_to_alpaca_format(input_file, output_file):
"""
将 Swift 格式的数据转换为 Alpaca 格式
输入格式:
{
"system": "你是个优秀的论文分类师",
"conversation": [
{
"human": "Based on the title...",
"assistant": "D"
}
]
}
"""
print(f"转换数据: {input_file} -> {output_file}")
converted_data = []
with open(input_file, "r", encoding="utf-8") as f:
for line in f:
try:
data = json.loads(line.strip())
# 检查数据结构
if "system" not in data or "conversation" not in data:
print(f"警告: 数据缺少必要字段: {data}")
continue
# 从 system 提取指令
instruction = data.get("system", "")
if not instruction:
instruction = "根据论文的标题、作者和摘要,确定该论文的科学类别。"
# 处理对话
for turn in data["conversation"]:
if "human" in turn and "assistant" in turn:
# 创建新的 Alpaca 格式数据
new_data = {
"messages": [
{
"role": "assistant",
"content": "This is a paper titled " + turn["human"]
}]}
converted_data.append(new_data)
except json.JSONDecodeError:
print(f"警告: 无法解析JSON行: {line}")
except Exception as e:
print(f"处理行时发生错误: {str(e)}")
# 写入输出文件
with open(output_file, "w", encoding="utf-8") as f:
for item in converted_data:
f.write(json.dumps(item, ensure_ascii=False) + "\n")
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
def convert_onedata2multi_type(input_file, output_file, num_templates):
"""
读取input_file将Swift格式的1条数据按20种问题模板格式转换为20条数据
并保存为output_file
参数:
input_file: 输入文件路径
output_file: 输出文件路径
"""
print(f"开始转换数据...每条数据生成{num_templates}条变体")
print(f"开始转换数据: {input_file} -> {output_file}")
category_text=" A. quant-ph\nB. physics.chem-ph\nC. physics.atom-ph\nD. cond-mat.soft\nE. cs.RO\nF. cs.CL\nG. cs.SE\nH. cs.IR\nI. hep-th\nJ. hep-ph\nK. physics.optics\nL. cs.AI\nM. cs.CV\nN. nucl-th\nO. astro-ph\nP. math.PR\nQ. cs.OS\nR. eess.SP\nS. math.OC\nT. math.DS\nU. math.DG\nV. math.MP\nW. cs.MM\nX. stat.ME\nY. math.CO\nZ. cs.NE\n"
# 定义20种问题模板
question_templates = [
# 直接提问式
"{category_text}What is the scientific category for a paper titled '{title}', authored by {authors}, with abstract '{abstract}'?",
# 命令式
"Classify this paper into its scientific category based on title '{title}', authors '{authors}', and abstract '{abstract}'.{category_text}",
# 描述性引导
"{category_text}Given a research paper with title '{title}', authors {authors}, and abstract '{abstract}', identify the appropriate discipline.",
# 正式请求
"Please assign the scientific category for the paper: title '{title}', authors '{authors}', abstract '{abstract}'.{category_text}",
# 摘要优先
"Using the abstract '{abstract}', title '{title}', and authors '{authors}', determine the paper's category.{category_text}",
# 作者强调
"{category_text}From authors '{authors}', title '{title}', and abstract '{abstract}', what category does this paper fall into?",
# 问题链式
"Here's a paper: title '{title}', authors {authors}, abstract '{abstract}'. What is its scientific category?{category_text}",
# 简洁版
"Category for: title '{title}', authors '{authors}', abstract '{abstract}'?{category_text}",
# 上下文嵌入
"Considering the title '{title}', the authors '{authors}', and the abstract content '{abstract}', please specify the paper's field.{category_text}",
# 非正式口语
"Hey, what category is this paper? Title '{title}', by {authors}, abstract '{abstract}'.{category_text}",
# 元素罗列
"{category_text}Title: '{title}'. Authors: '{authors}'. Abstract: '{abstract}'. Now, what's the scientific category?",
# 假设场景
"If a paper has title '{title}', authors '{authors}', and abstract '{abstract}', which scientific category best fits it?{category_text}",
# 强调关键信息
"Based solely on the title '{title}', authors list '{authors}', and abstract text '{abstract}', categorize this paper.{category_text}",
# 间接询问
"For the paper '{title}' by {authors}, with abstract '{abstract}', could you indicate its scientific discipline?{category_text}",
# 完整句子整合
"Determine the category of the research paper entitled '{title}', written by {authors}, and summarized as '{abstract}'.{category_text}",
# 问题聚焦摘要
"The abstract '{abstract}' describes a paper titled '{title}' by authors '{authors}'. What category is it?{category_text}",
# 标题驱动
"{category_text}Starting from the title '{title}', and considering authors '{authors}' and abstract '{abstract}', what is the paper's category?",
# 多部分查询
"Part 1: Title is '{title}'. Part 2: Authors are '{authors}'. Part 3: Abstract is '{abstract}'. Based on this, classify the paper.{category_text}",
# 比较式
"Given the details: title '{title}', authors '{authors}', abstract '{abstract}', how would you categorize this paper scientifically?{category_text}",
# 行动导向
"Using the provided title '{title}', authors '{authors}', and abstract '{abstract}', output the scientific category for this paper.{category_text}"
]
multi_type_data = []
with open(input_file, "r", encoding="utf-8") as f:
for line in f:
try:
data = json.loads(line.strip())
# 检查新格式的数据结构
if "messages" in data and isinstance(data["messages"], list) and len(data["messages"]) >= 3:
# 提取系统指令
system_instruction = ""
human_content = ""
assistant_content = ""
for msg in data["messages"]:
if msg["role"] == "system":
system_instruction = msg["content"]
elif msg["role"] == "user":
human_content = msg["content"]
elif msg["role"] == "assistant":
assistant_content = msg["content"]
# 提取标题、作者和摘要
extracted = extract_title_author_and_abstract(human_content)
title = extracted.get("title", "")
authors = extracted.get("authors", "")
abstract = extracted.get("abstract", "")
n = min(num_templates, len(question_templates))
selected_templates = random.sample(question_templates, n)
# 为每个问题模板创建新数据
for template in selected_templates:
formatted_question = template.format(
title=title,
authors=authors,
abstract=abstract,
category_text=category_text
)
# 创建新的数据条目(保持新格式)
new_data = {
"messages": [
{"role": "system", "content": system_instruction},
{"role": "user", "content": formatted_question},
{"role": "assistant", "content": assistant_content}
]
}
multi_type_data.append(new_data)
# 检查旧格式的数据结构
elif "system" in data and "conversation" in data and data["conversation"]:
system_instruction = data.get("system", "根据论文的标题、作者和摘要,确定该论文的科学类别。")
for turn in data["conversation"]:
if "human" in turn and "assistant" in turn:
extracted = extract_title_author_and_abstract(turn["human"])
title = extracted.get("title", "")
authors = extracted.get("authors", "")
abstract = extracted.get("abstract", "")
n = min(num_templates, len(question_templates))
selected_templates = random.sample(question_templates, n)
for template in selected_templates:
formatted_question = template.format(
title=title,
authors=authors,
abstract=abstract,
category_text=category_text
)
new_data = {
"system": system_instruction,
"conversation": [
{
"human": formatted_question,
"assistant": turn["assistant"]
}
]
}
multi_type_data.append(new_data)
else:
print(f"警告: 数据格式不识别: {data}")
continue
except json.JSONDecodeError:
print(f"警告: 无法解析JSON行: {line}")
except Exception as e:
print(f"处理行时发生错误: {str(e)}")
# 写入输出文件
with open(output_file, "w", encoding="utf-8") as f:
for item in multi_type_data:
f.write(json.dumps(item, ensure_ascii=False) + "\n")
print(f"转换完成! 共转换 {len(multi_type_data)} 条数据")
if __name__ == "__main__":
content_text="Based on the title 'The Quantum Primordial Black Holes, Dimensionless Small Parameter, Inflationary Cosmology and Non-Gaussianity', authors 'Alexander Shalyt-Margolin', and abstract 'In the present work consideration is given to the primordial black holes ({\\bf pbhs}) in the Schwarzschild-de Sitter Metric with small mass (ultralight) in the preinflationary epoch. Within the scope of natural assumptions, it has been shown that the quantum-gravitational corrections ({\\bf qgcs}) to the characteristics of such black holes can contribute to all the cosmological parameters, shifting them compared with the semiclassical consideration. These contributions are determined by a series expansion in terms of a small parameter dependent on the hole mass (radius). For this pattern different cases have been considered (stationary, black hole evaporation...). It has been demonstrated that involvement of ({\\bf qgcs}) leads to a higher probability for the occurrence of such {\\bf pbhs}. Besides, high-energy deformations of Friedmann Equations created on the basis of these corrections have been derived for different patterns. In the last section of this work it is introduced a study into the contributions generated by the above-mentioned {\\bf qgcs} in inflationary cosmological perturbations. Besides, it has been shown that non-Gaussianity of these perturbations is higher as compared to the semi-classical pattern.', please determine the scientific category of this paper. Additional info: 35 pages, Latex , A. quant-ph\nB. physics.chem-ph\nC. physics.atom-ph\nD. cond-mat.soft\nE. cs.RO\nF. cs.CL\nG. cs.SE\nH. cs.IR\nI. hep-th\nJ. hep-ph\nK. physics.optics\nL. cs.AI\nM. cs.CV\nN. nucl-th\nO. astro-ph\nP. math.PR\nQ. cs.OS\nR. eess.SP\nS. math.OC\nT. math.DS\nU. math.DG\nV. math.MP\nW. cs.MM\nX. stat.ME\nY. math.CO\nZ. cs.NE"
extract_title_author_and_abstract(content_text)
# input_file = "G:\\11\\data-prepare\\val_dataset.jsonl"
# output_file = "G:\\11\\data-prepare\\val_dataset-m2.jsonl" # 输出文件路径
input_file = "G:\\11\\data-prepare\\newformat_sft_test_data--swift-sft-26.jsonl"
output_file = "G:\\11\\data-prepare\\newformat_sft_test_data--swift-sft-26-m2.jsonl" # 输出文件路径
convert_onedata2multi_type(input_file, output_file, num_templates=2)