swift
This commit is contained in:
42
01-pre.py
42
01-pre.py
@@ -1,14 +1,46 @@
|
||||
import json
|
||||
|
||||
# 要保留的类别关键词
|
||||
# target_categories = {
|
||||
# "astro-ph", "cond-mat.mes-hall", "cond-mat.mtrl-sci",
|
||||
# "cs.CL", "cs.CV", "cs.LG",
|
||||
# "gr-qc", "hep-ph", "hep-th", "quant-ph"
|
||||
# }
|
||||
|
||||
target_categories = {
|
||||
"astro-ph", "cond-mat.mes-hall", "cond-mat.mtrl-sci",
|
||||
"cs.CL", "cs.CV", "cs.LG",
|
||||
"gr-qc", "hep-ph", "hep-th", "quant-ph"
|
||||
}
|
||||
'quant-ph',
|
||||
'physics.chem-ph',
|
||||
'physics.atom-ph',
|
||||
'cond-mat.soft',
|
||||
'cs.RO',
|
||||
'cs.CL',
|
||||
'cs.SE',
|
||||
'cs.IR',
|
||||
'hep-th',
|
||||
'hep-ph',
|
||||
'physics.optics',
|
||||
'cs.AI',
|
||||
'cs.CV',
|
||||
'nucl-th',
|
||||
'astro-ph',
|
||||
'math.PR',
|
||||
'cs.OS',
|
||||
'eess.SP',
|
||||
'math.OC',
|
||||
'math.DS',
|
||||
'math.DG',
|
||||
'math.MP',
|
||||
'cs.MM',
|
||||
'stat.ME',
|
||||
'math.CO',
|
||||
'cs.NE'
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
input_path = "arxiv-metadata-oai-snapshot.json"#原数据路径
|
||||
output_path = "arxiv-metadata-oai-snapshot--.json" # 使用 JSON Lines 格式输出路径
|
||||
output_path = "arxiv-metadata-oai-snapshot--26.json" # 使用 JSON Lines 格式输出路径
|
||||
|
||||
count = 0
|
||||
|
||||
|
@@ -1,9 +1,9 @@
|
||||
import json
|
||||
import random
|
||||
|
||||
input_path = "arxiv-metadata-oai-snapshot-date-len.json"
|
||||
output_path = "arxiv-metadata-oai-snapshot--ratio.json"
|
||||
sample_size = 2000 # 你可以改成 10000 等其他数字
|
||||
input_path = "arxiv-metadata-oai-snapshot--26.json"
|
||||
output_path = "arxiv-metadata-oai-snapshot--26-500.json"
|
||||
sample_size = 4000 # 你可以改成 10000 等其他数字
|
||||
|
||||
|
||||
|
||||
@@ -15,18 +15,50 @@ print(f"原始数据量:{len(data)} 条")
|
||||
|
||||
## 按类别筛选数据,不是随机
|
||||
## 每个类别指定抽取的比例
|
||||
# category_proportions = {
|
||||
# 'astro-ph': 0.1336,
|
||||
# 'cond-mat.mes-hall': 0.0486,
|
||||
# 'cond-mat.mtrl-sci': 0.0587,
|
||||
# 'cs.CL': 0.085,
|
||||
# 'cs.CV': 0.0931,
|
||||
# 'cs.LG': 0.0992,
|
||||
# 'gr-qc': 0.1174,
|
||||
# 'hep-ph': 0.1194,
|
||||
# 'hep-th': 0.085,
|
||||
# 'quant-ph': 0.1599
|
||||
# }
|
||||
|
||||
category_proportions = {
|
||||
'astro-ph': 0.1,
|
||||
'cond-mat.mes-hall': 0.1,
|
||||
'cond-mat.mtrl-sci': 0.1,
|
||||
'cs.CL': 0.1,
|
||||
'cs.CV': 0.1,
|
||||
'cs.LG': 0.1,
|
||||
'gr-qc': 0.1,
|
||||
'hep-ph': 0.1,
|
||||
'hep-th': 0.1,
|
||||
'quant-ph': 0.1
|
||||
}
|
||||
'quant-ph': 0.1,
|
||||
'physics.chem-ph': 0.1,
|
||||
'physics.atom-ph': 0.1,
|
||||
'cond-mat.soft': 0.1,
|
||||
'cs.RO': 0.1,
|
||||
'cs.CL': 0.1,
|
||||
'cs.SE': 0.1,
|
||||
'cs.IR': 0.1,
|
||||
'hep-th': 0.1,
|
||||
'hep-ph': 0.1,
|
||||
'physics.optics': 0.1,
|
||||
'cs.AI': 0.1,
|
||||
'cs.CV': 0.1,
|
||||
'nucl-th': 0.1,
|
||||
'astro-ph': 0.1,
|
||||
'math.PR': 0.1,
|
||||
'cs.OS': 0.1,
|
||||
'eess.SP': 0.1,
|
||||
'math.OC': 0.1,
|
||||
'math.DS': 0.1,
|
||||
'math.DG': 0.1,
|
||||
'math.MP': 0.1,
|
||||
'cs.MM': 0.1,
|
||||
'stat.ME': 0.1,
|
||||
'math.CO': 0.1,
|
||||
'cs.NE': 0.1
|
||||
}
|
||||
|
||||
|
||||
|
||||
## print 每个类别的筛选比例和数量
|
||||
print("每个类别的筛选比例和数量:")
|
||||
for category, proportion in category_proportions.items():
|
||||
|
@@ -1,27 +1,48 @@
|
||||
import json
|
||||
import random
|
||||
|
||||
input_file = "arxiv-metadata-oai-snapshot--ratio.json" # 20000条原始数据文件路径
|
||||
output_file = "arxiv-metadata-oai-snapshot--swift.json"
|
||||
input_file = "arxiv-metadata-oai-snapshot--26-500.json" # 20000条原始数据文件路径
|
||||
output_file = "arxiv-metadata-oai-snapshot--swift-26-500.json"
|
||||
|
||||
# 类别对应选项映射
|
||||
label_map = {
|
||||
"astro-ph": "A",
|
||||
"cond-mat.mes-hall": "B",
|
||||
"cond-mat.mtrl-sci": "C",
|
||||
"cs.CL": "D",
|
||||
"cs.CV": "E",
|
||||
"cs.LG": "F",
|
||||
"gr-qc": "G",
|
||||
"hep-ph": "H",
|
||||
"hep-th": "I",
|
||||
"quant-ph": "J"
|
||||
'quant-ph': 'A',
|
||||
'physics.chem-ph': 'B',
|
||||
'physics.atom-ph': 'C',
|
||||
'cond-mat.soft': 'D',
|
||||
'cs.RO': 'E',
|
||||
'cs.CL': 'F',
|
||||
'cs.SE': 'G',
|
||||
'cs.IR': 'H',
|
||||
'hep-th': 'I',
|
||||
'hep-ph': 'J',
|
||||
'physics.optics': 'K',
|
||||
'cs.AI': 'L',
|
||||
'cs.CV': 'M',
|
||||
'nucl-th': 'N',
|
||||
'astro-ph': 'O',
|
||||
'math.PR': 'P',
|
||||
'cs.OS': 'Q',
|
||||
'eess.SP': 'R',
|
||||
'math.OC': 'S',
|
||||
'math.DS': 'T',
|
||||
'math.DG': 'U',
|
||||
'math.MP': 'V',
|
||||
'cs.MM': 'W',
|
||||
'stat.ME': 'X',
|
||||
'math.CO': 'Y',
|
||||
'cs.NE': 'Z'
|
||||
}
|
||||
|
||||
options_text = (
|
||||
"\n\nA. astro-ph\nB. cond-mat.mes-hall\nC. cond-mat.mtrl-sci\nD. cs.CL\n"
|
||||
"E. cs.CV\nF. cs.LG\nG. gr-qc\nH. hep-ph\nI. hep-th\nJ. quant-ph"
|
||||
)
|
||||
options = [
|
||||
"A. quant-ph", "B. physics.chem-ph", "C. physics.atom-ph", "D. cond-mat.soft",
|
||||
"E. cs.RO", "F. cs.CL", "G. cs.SE", "H. cs.IR", "I. hep-th", "J. hep-ph",
|
||||
"K. physics.optics", "L. cs.AI", "M. cs.CV", "N. nucl-th", "O. astro-ph",
|
||||
"P. math.PR", "Q. cs.OS", "R. eess.SP", "S. math.OC", "T. math.DS",
|
||||
"U. math.DG", "V. math.MP", "W. cs.MM", "X. stat.ME", "Y. math.CO", "Z. cs.NE"
|
||||
]
|
||||
|
||||
options_text = "\n".join(options)
|
||||
|
||||
# 读取所有数据
|
||||
with open(input_file, 'r', encoding='utf-8') as f:
|
||||
|
81
05-data-csv-swift-pretrain.py
Normal file
81
05-data-csv-swift-pretrain.py
Normal file
@@ -0,0 +1,81 @@
|
||||
|
||||
import json
|
||||
|
||||
import csv
|
||||
|
||||
|
||||
|
||||
def convert_to_alpaca_format(input_file, output_file):
|
||||
"""
|
||||
读取csv文件,提取其中的question和answer列的数据,并转换为 Alpaca 格式。
|
||||
|
||||
输入csv格式:
|
||||
question,A,B,C,D,E,F,G,H,I,J,answer
|
||||
|
||||
输出格式 (swift):
|
||||
{
|
||||
"system": "你是个优秀的论文分类师",
|
||||
"conversation": [
|
||||
{
|
||||
"human": "Based on the title...",
|
||||
"assistant": "D"
|
||||
}
|
||||
]
|
||||
}
|
||||
"""
|
||||
print(f"转换数据: {input_file} -> {output_file}")
|
||||
|
||||
converted_data = []
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
csv_reader = csv.DictReader(f)
|
||||
for row in csv_reader:
|
||||
try:
|
||||
# 检查必要的列是否存在
|
||||
if "question" not in row or "answer" not in row:
|
||||
print(f"警告: 数据缺少必要列: {row}")
|
||||
continue
|
||||
|
||||
# 创建新的 swift 格式数据
|
||||
|
||||
|
||||
|
||||
|
||||
new_data = {
|
||||
|
||||
"messages": [
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "This is a paper titled " + row["question"][19:]
|
||||
#"assistant": row["answer"]
|
||||
}
|
||||
]
|
||||
}
|
||||
converted_data.append(new_data)
|
||||
|
||||
except Exception as e:
|
||||
print(f"处理行时发生错误: {str(e)}")
|
||||
|
||||
# 写入输出文件
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
for item in converted_data:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||
|
||||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||||
# parser.add_argument(
|
||||
# "--input",
|
||||
# type=str,
|
||||
# required=True,
|
||||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||||
# )
|
||||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||||
|
||||
# args = parser.parse_args()
|
||||
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
input_file = "newformat_sft_test_data.csv"
|
||||
output_file = "newformat_sft_test_data--swift-pretrain.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
80
05-data-csv-swift-sft.py
Normal file
80
05-data-csv-swift-sft.py
Normal file
@@ -0,0 +1,80 @@
|
||||
|
||||
import json
|
||||
|
||||
import csv
|
||||
|
||||
|
||||
|
||||
def convert_to_alpaca_format(input_file, output_file):
|
||||
"""
|
||||
读取csv文件,提取其中的question和answer列的数据,并转换为 Alpaca 格式。
|
||||
|
||||
输入csv格式:
|
||||
question,A,B,C,D,E,F,G,H,I,J,answer
|
||||
|
||||
输出格式 (swift):
|
||||
{
|
||||
"system": "你是个优秀的论文分类师",
|
||||
"conversation": [
|
||||
{
|
||||
"human": "Based on the title...",
|
||||
"assistant": "D"
|
||||
}
|
||||
]
|
||||
}
|
||||
"""
|
||||
print(f"转换数据: {input_file} -> {output_file}")
|
||||
|
||||
converted_data = []
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
csv_reader = csv.DictReader(f)
|
||||
for row in csv_reader:
|
||||
try:
|
||||
# 检查必要的列是否存在
|
||||
if "question" not in row or "answer" not in row:
|
||||
print(f"警告: 数据缺少必要列: {row}")
|
||||
continue
|
||||
|
||||
# 创建新的 swift 格式数据
|
||||
|
||||
|
||||
|
||||
|
||||
new_data = {
|
||||
"system": "你是个优秀的论文分类师",
|
||||
"conversation": [
|
||||
{
|
||||
"human": row["question"],
|
||||
"assistant": row["answer"]
|
||||
}
|
||||
]
|
||||
}
|
||||
converted_data.append(new_data)
|
||||
|
||||
except Exception as e:
|
||||
print(f"处理行时发生错误: {str(e)}")
|
||||
|
||||
# 写入输出文件
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
for item in converted_data:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||
|
||||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||||
# parser.add_argument(
|
||||
# "--input",
|
||||
# type=str,
|
||||
# required=True,
|
||||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||||
# )
|
||||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||||
|
||||
# args = parser.parse_args()
|
||||
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
input_file = "newformat_sft_test_data.csv"
|
||||
output_file = "newformat_sft_test_data--swift-sft.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
80
05-data-swfit-pretrain-revise.py
Normal file
80
05-data-swfit-pretrain-revise.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import json
|
||||
import os
|
||||
import argparse
|
||||
import re
|
||||
|
||||
|
||||
def convert_to_alpaca_format(input_file, output_file):
|
||||
"""
|
||||
将 Swift 格式的数据转换为 Alpaca 格式
|
||||
|
||||
输入格式:
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "This is a paper titled ...."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
删除"content"中的 "with ID 0704.0145,"部分
|
||||
按原格式输出
|
||||
"""
|
||||
print(f"转换数据: {input_file} -> {output_file}")
|
||||
|
||||
converted_data = []
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
try:
|
||||
data = json.loads(line.strip())
|
||||
|
||||
# 检查数据结构
|
||||
if "messages" not in data or not isinstance(data["messages"], list):
|
||||
print(f"警告: 数据格式不正确,缺少messages字段或格式错误")
|
||||
continue
|
||||
|
||||
if not data["messages"] or "content" not in data["messages"][0]:
|
||||
print(f"警告: messages为空或缺少content字段")
|
||||
continue
|
||||
|
||||
# 转换数据
|
||||
content = data["messages"][0]["content"]
|
||||
# 删除 "with ID xxxx.xxxx," 的部分
|
||||
content = re.sub(r'with ID \d+\.?\d*,\s*', '', content)
|
||||
content = content[:-180]
|
||||
|
||||
new_data = {
|
||||
"messages": [
|
||||
{
|
||||
"role": data["messages"][0].get("role", "assistant"),
|
||||
"content": content
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
converted_data.append(new_data)
|
||||
|
||||
except json.JSONDecodeError:
|
||||
print(f"警告: 无法解析JSON行: {line}")
|
||||
except Exception as e:
|
||||
print(f"处理行时发生错误: {str(e)}")
|
||||
|
||||
# 写入输出文件
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
for item in converted_data:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||
|
||||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
input_file = "arxiv-metadata-oai-snapshot--swift-pretrain.jsonl"
|
||||
output_file = "arxiv-metadata-oai-snapshot--swift-pretrain-.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
||||
|
||||
|
||||
|
||||
|
||||
|
97
05-data-swfit-sft2pretrain.py
Normal file
97
05-data-swfit-sft2pretrain.py
Normal file
@@ -0,0 +1,97 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
import argparse
|
||||
|
||||
|
||||
def convert_to_alpaca_format(input_file, output_file):
|
||||
"""
|
||||
将 Swift 格式的数据转换为 Alpaca 格式
|
||||
|
||||
输入格式:
|
||||
{
|
||||
"system": "你是个优秀的论文分类师",
|
||||
"conversation": [
|
||||
{
|
||||
"human": "Based on the title...",
|
||||
"assistant": "D"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
输出格式:
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "This is a paper titled ...."
|
||||
}
|
||||
]
|
||||
}
|
||||
"""
|
||||
print(f"转换数据: {input_file} -> {output_file}")
|
||||
|
||||
converted_data = []
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
try:
|
||||
data = json.loads(line.strip())
|
||||
|
||||
# 检查数据结构
|
||||
if "system" not in data or "conversation" not in data:
|
||||
print(f"警告: 数据缺少必要字段: {data}")
|
||||
continue
|
||||
|
||||
# 从 system 提取指令
|
||||
instruction = data.get("system", "")
|
||||
if not instruction:
|
||||
instruction = "根据论文的标题、作者和摘要,确定该论文的科学类别。"
|
||||
|
||||
# 处理对话
|
||||
for turn in data["conversation"]:
|
||||
if "human" in turn and "assistant" in turn:
|
||||
# 创建新的 Alpaca 格式数据
|
||||
new_data = {
|
||||
"messages": [
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "This is a paper titled " + turn["human"][19:]
|
||||
|
||||
}]}
|
||||
converted_data.append(new_data)
|
||||
|
||||
except json.JSONDecodeError:
|
||||
print(f"警告: 无法解析JSON行: {line}")
|
||||
except Exception as e:
|
||||
print(f"处理行时发生错误: {str(e)}")
|
||||
|
||||
# 写入输出文件
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
for item in converted_data:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||
|
||||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||||
# parser.add_argument(
|
||||
# "--input",
|
||||
# type=str,
|
||||
# required=True,
|
||||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||||
# )
|
||||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||||
|
||||
# args = parser.parse_args()
|
||||
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
input_file = "arxiv-metadata-oai-snapshot--swift-26.json"
|
||||
output_file = "arxiv-metadata-oai-snapshot--swift-pretrain-26.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
||||
|
||||
|
||||
|
||||
|
||||
|
@@ -84,4 +84,9 @@ if __name__ == "__main__":
|
||||
input_file = "arxiv-metadata-oai-snapshot--swift.json"
|
||||
output_file = "arxiv-metadata-oai-snapshot--xtuner.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
||||
convert_to_alpaca_format(input_file, output_file)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
74
05-data-xtuner-swfit.py
Normal file
74
05-data-xtuner-swfit.py
Normal file
@@ -0,0 +1,74 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
import argparse
|
||||
|
||||
|
||||
def convert_to_alpaca_format(input_file, output_file):
|
||||
"""
|
||||
将 Alpaca 格式转换为 Swift 格式的数据
|
||||
|
||||
输入格式:
|
||||
{
|
||||
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
|
||||
"input": "Based on the title...",
|
||||
"output": "D"
|
||||
}
|
||||
|
||||
|
||||
输出格式 (Alpaca):
|
||||
{
|
||||
"system": "你是个优秀的论文分类师",
|
||||
"conversation": [
|
||||
{
|
||||
"human": "Based on the title...",
|
||||
"assistant": "D"
|
||||
}
|
||||
]
|
||||
}
|
||||
"""
|
||||
print(f"转换数据: {input_file} -> {output_file}")
|
||||
|
||||
converted_data = []
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
try:
|
||||
data = json.loads(line.strip())
|
||||
|
||||
|
||||
|
||||
except json.JSONDecodeError:
|
||||
print(f"警告: 无法解析JSON行: {line}")
|
||||
except Exception as e:
|
||||
print(f"处理行时发生错误: {str(e)}")
|
||||
|
||||
# 写入输出文件
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
for item in converted_data:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||
|
||||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||||
# parser.add_argument(
|
||||
# "--input",
|
||||
# type=str,
|
||||
# required=True,
|
||||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||||
# )
|
||||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||||
|
||||
# args = parser.parse_args()
|
||||
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
input_file = "arxiv-metadata-oai-snapshot--swift.json"
|
||||
output_file = "arxiv-metadata-oai-snapshot--xtuner.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
||||
|
||||
|
||||
|
||||
|
||||
|
54
06-data-swift-compose.py
Normal file
54
06-data-swift-compose.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import json
|
||||
import os
|
||||
import argparse
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def get_Composition_ratio(input_file):
|
||||
"""
|
||||
计算数据集类别组成比例,并打印输出。
|
||||
:param input_file: 输入的JSONL文件路径
|
||||
"""
|
||||
# 读取JSONL文件
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
data = [json.loads(line) for line in f]
|
||||
|
||||
# 提取每条数据的类别标签(假设在 conversation[0]['assistant'])
|
||||
labels = []
|
||||
for item in data:
|
||||
# 兼容 conversation 为列表且有 assistant 字段
|
||||
if "conversation" in item and isinstance(item["conversation"], list):
|
||||
conv = item["conversation"]
|
||||
if len(conv) > 0 and "assistant" in conv[0]:
|
||||
labels.append(conv[0]["assistant"])
|
||||
else:
|
||||
labels.append("未知")
|
||||
else:
|
||||
labels.append("未知")
|
||||
|
||||
df = pd.DataFrame({"label": labels})
|
||||
|
||||
# 计算每个类别的数量
|
||||
counts = df['label'].value_counts()
|
||||
total = counts.sum()
|
||||
|
||||
# 计算每个类别的比例
|
||||
ratios = counts / total * 100
|
||||
|
||||
# 打印每个类别的比例
|
||||
print("类别比例和数量:")
|
||||
for category, ratio in ratios.items():
|
||||
print(f"类别 {category}: {ratio:.2f}% ({counts[category]} 条)")
|
||||
|
||||
# 绘制饼图
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.pie(ratios, labels=ratios.index, autopct='%1.1f%%', startangle=140)
|
||||
plt.title('数据集类别比例')
|
||||
plt.show()
|
||||
return ratios
|
||||
|
||||
if __name__ == "__main__":
|
||||
# input_file = "sftdata.jsonl"
|
||||
input_file = "output-26.jsonl"
|
||||
input_file = "arxiv-metadata-oai-snapshot--swift-26.json"
|
||||
get_Composition_ratio(input_file)
|
@@ -1,4 +1,3 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
import argparse
|
||||
@@ -22,10 +21,11 @@ def get_Composition_ratio(input_file):
|
||||
"""
|
||||
|
||||
# 读取JSONL文件
|
||||
with open(input_file, "r") as f:
|
||||
data = [json.loads(line) for line in f] # 读取每一行并解析为JSON对象
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
data = [json.loads(line) for line in f]
|
||||
df = pd.DataFrame(data)
|
||||
# print(df.head(5))
|
||||
print("实际列名:", df.columns)
|
||||
print("前几行数据:\n", df.head())
|
||||
# 计算每个类别的数量
|
||||
counts = df['output'].value_counts()
|
||||
# 计算总数
|
||||
@@ -67,7 +67,7 @@ if __name__ == "__main__":
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
#input_file = "arxiv-metadata-oai-snapshot--swift.json"
|
||||
input_file = "sftdata.jsonl" # 输出文件路径
|
||||
input_file = "newformat_sft_test_data--xtuner.jsonl" # 输出文件路径
|
||||
input_file = "arxiv-metadata-oai-snapshot--swift-26.json" # 输出文件路径
|
||||
|
||||
get_Composition_ratio(input_file)
|
||||
|
||||
|
9944
arxiv-metadata-oai-snapshot--swift-26-500.json
Normal file
9944
arxiv-metadata-oai-snapshot--swift-26-500.json
Normal file
File diff suppressed because it is too large
Load Diff
5000
arxiv-metadata-oai-snapshot--swift-26.json
Normal file
5000
arxiv-metadata-oai-snapshot--swift-26.json
Normal file
File diff suppressed because it is too large
Load Diff
5000
arxiv-metadata-oai-snapshot--swift-26.jsonl.txt
Normal file
5000
arxiv-metadata-oai-snapshot--swift-26.jsonl.txt
Normal file
File diff suppressed because it is too large
Load Diff
5000
arxiv-metadata-oai-snapshot--swift-pretrain-26.jsonl
Normal file
5000
arxiv-metadata-oai-snapshot--swift-pretrain-26.jsonl
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user