添加数据处理脚本,支持从原始数据筛选、抽样到转换为Alpaca格式
This commit is contained in:
parent
40c5dee22c
commit
24abc7aab3
29
01-pre.py
Normal file
29
01-pre.py
Normal file
@ -0,0 +1,29 @@
|
||||
import json
|
||||
|
||||
# 要保留的类别关键词
|
||||
target_categories = {
|
||||
"astro-ph", "cond-mat.mes-hall", "cond-mat.mtrl-sci",
|
||||
"cs.CL", "cs.CV", "cs.LG",
|
||||
"gr-qc", "hep-ph", "hep-th", "quant-ph"
|
||||
}
|
||||
|
||||
input_path = "arxiv-metadata-oai-snapshot.json"#原数据路径
|
||||
output_path = "arxiv-metadata-oai-snapshot--.json" # 使用 JSON Lines 格式输出路径
|
||||
|
||||
count = 0
|
||||
|
||||
with open(input_path, 'r') as infile, open(output_path, 'w') as outfile:
|
||||
for line in infile:
|
||||
try:
|
||||
record = json.loads(line)
|
||||
record_cats = record.get("categories", "").split()
|
||||
if record_cats:
|
||||
last_cat = record_cats[-1]
|
||||
if last_cat in target_categories:
|
||||
outfile.write(json.dumps(record) + '\n')
|
||||
count += 1
|
||||
except json.JSONDecodeError:
|
||||
continue # 忽略格式错误的行
|
||||
|
||||
print(f"筛选完成,共保存了 {count} 条记录到 {output_path}")
|
||||
|
26
02-data_select_date_len.py
Normal file
26
02-data_select_date_len.py
Normal file
@ -0,0 +1,26 @@
|
||||
import json
|
||||
|
||||
input_path = "arxiv-metadata-oai-snapshot--.json" # 上一步筛选后的数据
|
||||
output_path = "arxiv-metadata-oai-snapshot-date-len.json" # 输出高质量数据
|
||||
|
||||
count = 0
|
||||
|
||||
with open(input_path, 'r') as infile, open(output_path, 'w') as outfile:
|
||||
for line in infile:
|
||||
try:
|
||||
record = json.loads(line)
|
||||
|
||||
# 获取更新日期和摘要
|
||||
update_date = record.get("update_date", "")
|
||||
abstract = record.get("abstract", "")
|
||||
|
||||
# 过滤条件,这里根据自己的模型参数修改
|
||||
if len(abstract) >= 300 and len(abstract)<=4096:
|
||||
if update_date and int(update_date[:4]) >= 2020:
|
||||
outfile.write(json.dumps(record) + '\n')
|
||||
count += 1
|
||||
|
||||
except json.JSONDecodeError:
|
||||
continue # 跳过格式错误的行
|
||||
|
||||
print(f"高质量筛选完成,共保留 {count} 条记录到 {output_path}")
|
22
03-data_select_random.py
Normal file
22
03-data_select_random.py
Normal file
@ -0,0 +1,22 @@
|
||||
import json
|
||||
import random
|
||||
|
||||
input_path = "arxiv-metadata-oai-snapshot-date-len.json"
|
||||
output_path = "arxiv-metadata-oai-snapshot--random.json"
|
||||
sample_size = 10000 # 你可以改成 10000 等其他数字
|
||||
|
||||
# 先将所有数据加载到内存中(30万条可以接受)
|
||||
with open(input_path, 'r') as infile:
|
||||
data = [json.loads(line) for line in infile]
|
||||
|
||||
print(f"原始数据量:{len(data)} 条")
|
||||
random.seed(42) #随机数种子,可以自己随便调
|
||||
# 随机抽样
|
||||
sampled_data = random.sample(data, sample_size)
|
||||
|
||||
# 保存结果
|
||||
with open(output_path, 'w') as outfile:
|
||||
for record in sampled_data:
|
||||
outfile.write(json.dumps(record) + '\n')
|
||||
|
||||
print(f"已随机抽取 {sample_size} 条数据保存到 {output_path}")
|
61
03-data_select_ratio.py
Normal file
61
03-data_select_ratio.py
Normal file
@ -0,0 +1,61 @@
|
||||
import json
|
||||
import random
|
||||
|
||||
input_path = "arxiv-metadata-oai-snapshot-date-len.json"
|
||||
output_path = "arxiv-metadata-oai-snapshot--ratio.json"
|
||||
sample_size = 2000 # 你可以改成 10000 等其他数字
|
||||
|
||||
|
||||
|
||||
# 先将所有数据加载到内存中(30万条可以接受)
|
||||
with open(input_path, 'r') as infile:
|
||||
data = [json.loads(line) for line in infile]
|
||||
|
||||
print(f"原始数据量:{len(data)} 条")
|
||||
|
||||
## 按类别筛选数据,不是随机
|
||||
## 每个类别指定抽取的比例
|
||||
category_proportions = {
|
||||
'astro-ph': 0.1,
|
||||
'cond-mat.mes-hall': 0.1,
|
||||
'cond-mat.mtrl-sci': 0.1,
|
||||
'cs.CL': 0.1,
|
||||
'cs.CV': 0.1,
|
||||
'cs.LG': 0.1,
|
||||
'gr-qc': 0.1,
|
||||
'hep-ph': 0.1,
|
||||
'hep-th': 0.1,
|
||||
'quant-ph': 0.1
|
||||
}
|
||||
## print 每个类别的筛选比例和数量
|
||||
print("每个类别的筛选比例和数量:")
|
||||
for category, proportion in category_proportions.items():
|
||||
count = sample_size * proportion
|
||||
print(f"类别 {category}: 抽取比例 {proportion}, 数量 {count}")
|
||||
# 按每个类别的数量筛选数据
|
||||
filtered_data = []
|
||||
for category, proportion in category_proportions.items():
|
||||
count = int(sample_size * proportion)
|
||||
# 筛选出当前类别的数据
|
||||
category_data = [item for item in data if item.get('categories', '').strip() == category]
|
||||
# 如果当前类别的数据量小于需要抽取的数量,则全部取出
|
||||
if len(category_data) < count:
|
||||
filtered_data.extend(category_data)
|
||||
else:
|
||||
# 随机抽样指定数量的数据
|
||||
sampled_data = random.sample(category_data, count)
|
||||
filtered_data.extend(sampled_data)
|
||||
print(f"类别 {category}: 抽取数量 {count}")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# 保存结果
|
||||
with open(output_path, 'w') as outfile:
|
||||
for record in filtered_data:
|
||||
outfile.write(json.dumps(record) + '\n')
|
||||
|
||||
print(f"已按比例抽取 {sample_size} 条数据保存到 {output_path}")
|
70
04-data2swift.py
Normal file
70
04-data2swift.py
Normal file
@ -0,0 +1,70 @@
|
||||
import json
|
||||
import random
|
||||
|
||||
input_file = "arxiv-metadata-oai-snapshot--ratio.json" # 20000条原始数据文件路径
|
||||
output_file = "arxiv-metadata-oai-snapshot--swift.json"
|
||||
|
||||
# 类别对应选项映射
|
||||
label_map = {
|
||||
"astro-ph": "A",
|
||||
"cond-mat.mes-hall": "B",
|
||||
"cond-mat.mtrl-sci": "C",
|
||||
"cs.CL": "D",
|
||||
"cs.CV": "E",
|
||||
"cs.LG": "F",
|
||||
"gr-qc": "G",
|
||||
"hep-ph": "H",
|
||||
"hep-th": "I",
|
||||
"quant-ph": "J"
|
||||
}
|
||||
|
||||
options_text = (
|
||||
"\n\nA. astro-ph\nB. cond-mat.mes-hall\nC. cond-mat.mtrl-sci\nD. cs.CL\n"
|
||||
"E. cs.CV\nF. cs.LG\nG. gr-qc\nH. hep-ph\nI. hep-th\nJ. quant-ph"
|
||||
)
|
||||
|
||||
# 读取所有数据
|
||||
with open(input_file, 'r', encoding='utf-8') as f:
|
||||
data = [json.loads(line) for line in f]
|
||||
|
||||
# 随机抽样1000条
|
||||
#random.seed(42)
|
||||
sampled = data
|
||||
|
||||
with open(output_file, 'w', encoding='utf-8') as f_out:
|
||||
count = 0
|
||||
for item in sampled:
|
||||
# 多类别时取最后一个类别(通常以空格分割)
|
||||
categories_str = item.get("categories", "").strip()
|
||||
if not categories_str:
|
||||
continue
|
||||
last_category = categories_str.split()[-1]
|
||||
|
||||
if last_category not in label_map:
|
||||
continue
|
||||
|
||||
title = item.get("title", "").replace("\n", " ").strip()
|
||||
authors = item.get("authors", "").replace("\n", " ").strip()
|
||||
abstract = item.get("abstract", "").replace("\n", " ").strip()
|
||||
if not title or not authors or not abstract:
|
||||
continue
|
||||
|
||||
human_text = (
|
||||
f"Based on the title '{title}', authors '{authors}', and abstract '{abstract}', "
|
||||
f"please determine the scientific category of this paper.{options_text}"
|
||||
)
|
||||
|
||||
finetune_sample = {
|
||||
"system": "你是个优秀的论文分类师",
|
||||
"conversation": [
|
||||
{
|
||||
"human": human_text,
|
||||
"assistant": label_map[last_category]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
f_out.write(json.dumps(finetune_sample, ensure_ascii=False) + "\n")
|
||||
count += 1
|
||||
|
||||
print(f"转换完成,共生成{count}条微调数据,保存到 {output_file}")
|
68
05-data-csv-xtuner.py
Normal file
68
05-data-csv-xtuner.py
Normal file
@ -0,0 +1,68 @@
|
||||
|
||||
import json
|
||||
|
||||
import csv
|
||||
|
||||
|
||||
|
||||
def convert_to_alpaca_format(input_file, output_file):
|
||||
"""
|
||||
读取csv文件,提取其中的question和answer列的数据,并转换为 Alpaca 格式。
|
||||
|
||||
输入csv格式:
|
||||
question,A,B,C,D,E,F,G,H,I,J,answer
|
||||
|
||||
输出格式 (Alpaca):
|
||||
{
|
||||
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
|
||||
"input": "Based on the title...",
|
||||
"output": "D"
|
||||
}
|
||||
"""
|
||||
print(f"转换数据: {input_file} -> {output_file}")
|
||||
|
||||
converted_data = []
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
csv_reader = csv.DictReader(f)
|
||||
for row in csv_reader:
|
||||
try:
|
||||
# 检查必要的列是否存在
|
||||
if "question" not in row or "answer" not in row:
|
||||
print(f"警告: 数据缺少必要列: {row}")
|
||||
continue
|
||||
|
||||
# 创建新的 Alpaca 格式数据
|
||||
new_data = {
|
||||
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
|
||||
"input": row["question"],
|
||||
"output": row["answer"]
|
||||
}
|
||||
converted_data.append(new_data)
|
||||
|
||||
except Exception as e:
|
||||
print(f"处理行时发生错误: {str(e)}")
|
||||
|
||||
# 写入输出文件
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
for item in converted_data:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||
|
||||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||||
# parser.add_argument(
|
||||
# "--input",
|
||||
# type=str,
|
||||
# required=True,
|
||||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||||
# )
|
||||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||||
|
||||
# args = parser.parse_args()
|
||||
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
input_file = "newformat_sft_test_data.csv"
|
||||
output_file = "newformat_sft_test_data--xtuner.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
87
05-data-swfit-xtuner.py
Normal file
87
05-data-swfit-xtuner.py
Normal file
@ -0,0 +1,87 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
import argparse
|
||||
|
||||
|
||||
def convert_to_alpaca_format(input_file, output_file):
|
||||
"""
|
||||
将 Swift 格式的数据转换为 Alpaca 格式
|
||||
|
||||
输入格式:
|
||||
{
|
||||
"system": "你是个优秀的论文分类师",
|
||||
"conversation": [
|
||||
{
|
||||
"human": "Based on the title...",
|
||||
"assistant": "D"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
输出格式 (Alpaca):
|
||||
{
|
||||
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
|
||||
"input": "Based on the title...",
|
||||
"output": "D"
|
||||
}
|
||||
"""
|
||||
print(f"转换数据: {input_file} -> {output_file}")
|
||||
|
||||
converted_data = []
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
try:
|
||||
data = json.loads(line.strip())
|
||||
|
||||
# 检查数据结构
|
||||
if "system" not in data or "conversation" not in data:
|
||||
print(f"警告: 数据缺少必要字段: {data}")
|
||||
continue
|
||||
|
||||
# 从 system 提取指令
|
||||
instruction = data.get("system", "")
|
||||
if not instruction:
|
||||
instruction = "根据论文的标题、作者和摘要,确定该论文的科学类别。"
|
||||
|
||||
# 处理对话
|
||||
for turn in data["conversation"]:
|
||||
if "human" in turn and "assistant" in turn:
|
||||
# 创建新的 Alpaca 格式数据
|
||||
new_data = {
|
||||
"instruction": instruction,
|
||||
"input": turn["human"],
|
||||
"output": turn["assistant"],
|
||||
}
|
||||
converted_data.append(new_data)
|
||||
|
||||
except json.JSONDecodeError:
|
||||
print(f"警告: 无法解析JSON行: {line}")
|
||||
except Exception as e:
|
||||
print(f"处理行时发生错误: {str(e)}")
|
||||
|
||||
# 写入输出文件
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
for item in converted_data:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||
|
||||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||||
# parser.add_argument(
|
||||
# "--input",
|
||||
# type=str,
|
||||
# required=True,
|
||||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||||
# )
|
||||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||||
|
||||
# args = parser.parse_args()
|
||||
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
input_file = "arxiv-metadata-oai-snapshot--swift.json"
|
||||
output_file = "arxiv-metadata-oai-snapshot--xtuner.jsonl" # 输出文件路径
|
||||
|
||||
convert_to_alpaca_format(input_file, output_file)
|
75
06-data-xtuner-compose.py
Normal file
75
06-data-xtuner-compose.py
Normal file
@ -0,0 +1,75 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
import argparse
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
def get_Composition_ratio(input_file):
|
||||
"""
|
||||
输出格式 (Alpaca):
|
||||
{
|
||||
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
|
||||
"input": "Based on the title...",
|
||||
"output": "D"
|
||||
}
|
||||
计算数据集组成比例,并打印输出。
|
||||
:param input_file: 输入的JSONL文件路径
|
||||
|
||||
|
||||
"""
|
||||
|
||||
# 读取JSONL文件
|
||||
with open(input_file, "r") as f:
|
||||
data = [json.loads(line) for line in f] # 读取每一行并解析为JSON对象
|
||||
df = pd.DataFrame(data)
|
||||
# print(df.head(5))
|
||||
# 计算每个类别的数量
|
||||
counts = df['output'].value_counts()
|
||||
# 计算总数
|
||||
total = counts.sum()
|
||||
|
||||
# 计算每个类别的比例
|
||||
ratios = counts / total * 100
|
||||
# 打印每个类别的比例
|
||||
print("类别比例和数量:")
|
||||
for category, ratio in ratios.items():
|
||||
print(f"类别 {category}: {ratio:.2f}% ({counts[category]} 条)")
|
||||
# 绘制饼图
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.pie(ratios, labels=ratios.index, autopct='%1.1f%%', startangle=140)
|
||||
plt.title('数据集类别比例')
|
||||
plt.show()
|
||||
return ratios
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||||
# parser.add_argument(
|
||||
# "--input",
|
||||
# type=str,
|
||||
# required=True,
|
||||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||||
# )
|
||||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||||
|
||||
# args = parser.parse_args()
|
||||
|
||||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||||
#input_file = "arxiv-metadata-oai-snapshot--swift.json"
|
||||
input_file = "sftdata.jsonl" # 输出文件路径
|
||||
input_file = "newformat_sft_test_data--xtuner.jsonl" # 输出文件路径
|
||||
|
||||
get_Composition_ratio(input_file)
|
||||
|
||||
|
||||
#convert_to_alpaca_format(input_file, output_file)
|
Loading…
x
Reference in New Issue
Block a user