68 lines
2.2 KiB
Python
68 lines
2.2 KiB
Python
|
||
import json
|
||
|
||
import csv
|
||
|
||
|
||
|
||
def convert_to_alpaca_format(input_file, output_file):
|
||
"""
|
||
读取csv文件,提取其中的question和answer列的数据,并转换为 Alpaca 格式。
|
||
|
||
输入csv格式:
|
||
question,A,B,C,D,E,F,G,H,I,J,answer
|
||
|
||
输出格式 (Alpaca):
|
||
{
|
||
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
|
||
"input": "Based on the title...",
|
||
"output": "D"
|
||
}
|
||
"""
|
||
print(f"转换数据: {input_file} -> {output_file}")
|
||
|
||
converted_data = []
|
||
with open(input_file, "r", encoding="utf-8") as f:
|
||
csv_reader = csv.DictReader(f)
|
||
for row in csv_reader:
|
||
try:
|
||
# 检查必要的列是否存在
|
||
if "question" not in row or "answer" not in row:
|
||
print(f"警告: 数据缺少必要列: {row}")
|
||
continue
|
||
|
||
# 创建新的 Alpaca 格式数据
|
||
new_data = {
|
||
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
|
||
"input": row["question"],
|
||
"output": row["answer"]
|
||
}
|
||
converted_data.append(new_data)
|
||
|
||
except Exception as e:
|
||
print(f"处理行时发生错误: {str(e)}")
|
||
|
||
# 写入输出文件
|
||
with open(output_file, "w", encoding="utf-8") as f:
|
||
for item in converted_data:
|
||
f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||
|
||
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
|
||
|
||
if __name__ == "__main__":
|
||
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
|
||
# parser.add_argument(
|
||
# "--input",
|
||
# type=str,
|
||
# required=True,
|
||
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
|
||
# )
|
||
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
|
||
|
||
# args = parser.parse_args()
|
||
|
||
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
|
||
input_file = "newformat_sft_test_data.csv"
|
||
output_file = "newformat_sft_test_data--xtuner.jsonl" # 输出文件路径
|
||
|
||
convert_to_alpaca_format(input_file, output_file) |