mirror of
https://gitee.com/hhyykk/ipms-sjy.git
synced 2025-07-15 19:45:06 +08:00
@ -2,8 +2,6 @@ package cn.iocoder.yudao.framework.ai.config;
|
||||
|
||||
import cn.iocoder.yudao.framework.ai.core.factory.AiModelFactory;
|
||||
import cn.iocoder.yudao.framework.ai.core.factory.AiModelFactoryImpl;
|
||||
import cn.iocoder.yudao.framework.ai.core.factory.AiVectorStoreFactory;
|
||||
import cn.iocoder.yudao.framework.ai.core.factory.AiVectorStoreFactoryImpl;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.deepseek.DeepSeekChatModel;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.deepseek.DeepSeekChatOptions;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.midjourney.api.MidjourneyApi;
|
||||
@ -38,11 +36,6 @@ public class YudaoAiAutoConfiguration {
|
||||
return new AiModelFactoryImpl();
|
||||
}
|
||||
|
||||
@Bean
|
||||
public AiVectorStoreFactory aiVectorFactory() {
|
||||
return new AiVectorStoreFactoryImpl();
|
||||
}
|
||||
|
||||
|
||||
// ========== 各种 AI Client 创建 ==========
|
||||
|
||||
@ -89,7 +82,7 @@ public class YudaoAiAutoConfiguration {
|
||||
// TODO @xin 免费版本
|
||||
// @Bean
|
||||
// @Lazy // TODO 芋艿:临时注释,避免无法启动」
|
||||
// public EmbeddingModel transformersEmbeddingClient() {
|
||||
// public TransformersEmbeddingModel transformersEmbeddingClient() {
|
||||
// return new TransformersEmbeddingModel(MetadataMode.EMBED);
|
||||
// }
|
||||
|
||||
@ -98,23 +91,24 @@ public class YudaoAiAutoConfiguration {
|
||||
*/
|
||||
// @Bean
|
||||
// @Lazy // TODO 芋艿:临时注释,避免无法启动
|
||||
// public RedisVectorStore vectorStore(TongYiTextEmbeddingModel tongYiTextEmbeddingModel, RedisVectorStoreProperties properties,
|
||||
// public RedisVectorStore vectorStore(TransformersEmbeddingModel embeddingModel, RedisVectorStoreProperties properties,
|
||||
// RedisProperties redisProperties) {
|
||||
// var config = RedisVectorStore.RedisVectorStoreConfig.builder()
|
||||
// .withIndexName(properties.getIndex())
|
||||
// .withPrefix(properties.getPrefix())
|
||||
// .withMetadataFields(new RedisVectorStore.MetadataField("knowledgeId", Schema.FieldType.NUMERIC))
|
||||
// .build();
|
||||
//
|
||||
// RedisVectorStore redisVectorStore = new RedisVectorStore(config, tongYiTextEmbeddingModel,
|
||||
// RedisVectorStore redisVectorStore = new RedisVectorStore(config, embeddingModel,
|
||||
// new JedisPooled(redisProperties.getHost(), redisProperties.getPort()),
|
||||
// properties.isInitializeSchema());
|
||||
// redisVectorStore.afterPropertiesSet();
|
||||
// return redisVectorStore;
|
||||
// }
|
||||
|
||||
@Bean
|
||||
@Lazy // TODO 芋艿:临时注释,避免无法启动
|
||||
public TokenTextSplitter tokenTextSplitter() {
|
||||
//TODO @xin 配置提取
|
||||
return new TokenTextSplitter(500, 100, 5, 10000, true);
|
||||
}
|
||||
|
||||
|
@ -6,6 +6,7 @@ import cn.iocoder.yudao.framework.ai.core.model.suno.api.SunoApi;
|
||||
import org.springframework.ai.chat.model.ChatModel;
|
||||
import org.springframework.ai.embedding.EmbeddingModel;
|
||||
import org.springframework.ai.image.ImageModel;
|
||||
import org.springframework.ai.vectorstore.VectorStore;
|
||||
|
||||
/**
|
||||
* AI Model 模型工厂的接口类
|
||||
@ -92,4 +93,17 @@ public interface AiModelFactory {
|
||||
*/
|
||||
EmbeddingModel getOrCreateEmbeddingModel(AiPlatformEnum platform, String apiKey, String url);
|
||||
|
||||
/**
|
||||
* 基于指定配置,获得 VectorStore 对象
|
||||
* <p>
|
||||
* 如果不存在,则进行创建
|
||||
*
|
||||
* @param embeddingModel 嵌入模型
|
||||
* @param platform 平台
|
||||
* @param apiKey API KEY
|
||||
* @param url API URL
|
||||
* @return VectorStore 对象
|
||||
*/
|
||||
VectorStore getOrCreateVectorStore(EmbeddingModel embeddingModel, AiPlatformEnum platform, String apiKey, String url);
|
||||
|
||||
}
|
||||
|
@ -13,6 +13,7 @@ import cn.iocoder.yudao.framework.ai.core.model.deepseek.DeepSeekChatModel;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.midjourney.api.MidjourneyApi;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.suno.api.SunoApi;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel;
|
||||
import cn.iocoder.yudao.framework.common.util.spring.SpringUtils;
|
||||
import com.alibaba.cloud.ai.tongyi.TongYiAutoConfiguration;
|
||||
import com.alibaba.cloud.ai.tongyi.TongYiConnectionProperties;
|
||||
import com.alibaba.cloud.ai.tongyi.chat.TongYiChatModel;
|
||||
@ -54,13 +55,18 @@ import org.springframework.ai.qianfan.api.QianFanApi;
|
||||
import org.springframework.ai.qianfan.api.QianFanImageApi;
|
||||
import org.springframework.ai.stabilityai.StabilityAiImageModel;
|
||||
import org.springframework.ai.stabilityai.api.StabilityAiApi;
|
||||
import org.springframework.ai.vectorstore.RedisVectorStore;
|
||||
import org.springframework.ai.vectorstore.VectorStore;
|
||||
import org.springframework.ai.zhipuai.ZhiPuAiChatModel;
|
||||
import org.springframework.ai.zhipuai.ZhiPuAiImageModel;
|
||||
import org.springframework.ai.zhipuai.api.ZhiPuAiApi;
|
||||
import org.springframework.ai.zhipuai.api.ZhiPuAiImageApi;
|
||||
import org.springframework.boot.autoconfigure.data.redis.RedisProperties;
|
||||
import org.springframework.retry.support.RetryTemplate;
|
||||
import org.springframework.web.client.ResponseErrorHandler;
|
||||
import org.springframework.web.client.RestClient;
|
||||
import redis.clients.jedis.JedisPooled;
|
||||
import redis.clients.jedis.search.Schema;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
@ -191,6 +197,25 @@ public class AiModelFactoryImpl implements AiModelFactory {
|
||||
});
|
||||
}
|
||||
|
||||
@Override
|
||||
public VectorStore getOrCreateVectorStore(EmbeddingModel embeddingModel, AiPlatformEnum platform, String apiKey, String url) {
|
||||
String cacheKey = buildClientCacheKey(VectorStore.class, platform, apiKey, url);
|
||||
return Singleton.get(cacheKey, (Func0<VectorStore>) () -> {
|
||||
String prefix = StrUtil.format("{}#{}:", platform.getPlatform(), apiKey);
|
||||
var config = RedisVectorStore.RedisVectorStoreConfig.builder()
|
||||
.withIndexName(cacheKey)
|
||||
.withPrefix(prefix)
|
||||
.withMetadataFields(new RedisVectorStore.MetadataField("knowledgeId", Schema.FieldType.NUMERIC))
|
||||
.build();
|
||||
RedisProperties redisProperties = SpringUtils.getBean(RedisProperties.class);
|
||||
RedisVectorStore redisVectorStore = new RedisVectorStore(config, embeddingModel,
|
||||
new JedisPooled(redisProperties.getHost(), redisProperties.getPort()),
|
||||
true);
|
||||
redisVectorStore.afterPropertiesSet();
|
||||
return redisVectorStore;
|
||||
});
|
||||
}
|
||||
|
||||
private static String buildClientCacheKey(Class<?> clazz, Object... params) {
|
||||
if (ArrayUtil.isEmpty(params)) {
|
||||
return clazz.getName();
|
||||
|
@ -1,28 +0,0 @@
|
||||
package cn.iocoder.yudao.framework.ai.core.factory;
|
||||
|
||||
import cn.iocoder.yudao.framework.ai.core.enums.AiPlatformEnum;
|
||||
import org.springframework.ai.embedding.EmbeddingModel;
|
||||
import org.springframework.ai.vectorstore.VectorStore;
|
||||
|
||||
// TODO @xin:也放到 AiModelFactory 里面好了,后续改成 AiFactory
|
||||
/**
|
||||
* AI Vector 模型工厂的接口类
|
||||
*
|
||||
* @author xiaoxin
|
||||
*/
|
||||
public interface AiVectorStoreFactory {
|
||||
|
||||
/**
|
||||
* 基于指定配置,获得 VectorStore 对象
|
||||
* <p>
|
||||
* 如果不存在,则进行创建
|
||||
*
|
||||
* @param embeddingModel 嵌入模型
|
||||
* @param platform 平台
|
||||
* @param apiKey API KEY
|
||||
* @param url API URL
|
||||
* @return VectorStore 对象
|
||||
*/
|
||||
VectorStore getOrCreateVectorStore(EmbeddingModel embeddingModel, AiPlatformEnum platform, String apiKey, String url);
|
||||
|
||||
}
|
@ -1,52 +0,0 @@
|
||||
package cn.iocoder.yudao.framework.ai.core.factory;
|
||||
|
||||
import cn.hutool.core.lang.Singleton;
|
||||
import cn.hutool.core.lang.func.Func0;
|
||||
import cn.hutool.core.util.ArrayUtil;
|
||||
import cn.hutool.core.util.StrUtil;
|
||||
import cn.iocoder.yudao.framework.ai.core.enums.AiPlatformEnum;
|
||||
import cn.iocoder.yudao.framework.common.util.spring.SpringUtils;
|
||||
import org.springframework.ai.embedding.EmbeddingModel;
|
||||
import org.springframework.ai.vectorstore.RedisVectorStore;
|
||||
import org.springframework.ai.vectorstore.VectorStore;
|
||||
import org.springframework.boot.autoconfigure.data.redis.RedisProperties;
|
||||
import redis.clients.jedis.JedisPooled;
|
||||
|
||||
/**
|
||||
* AI Vector 模型工厂的实现类
|
||||
* 使用 redisVectorStore 实现 VectorStore
|
||||
*
|
||||
* @author xiaoxin
|
||||
*/
|
||||
public class AiVectorStoreFactoryImpl implements AiVectorStoreFactory {
|
||||
|
||||
@Override
|
||||
public VectorStore getOrCreateVectorStore(EmbeddingModel embeddingModel, AiPlatformEnum platform, String apiKey, String url) {
|
||||
String cacheKey = buildClientCacheKey(VectorStore.class, platform, apiKey, url);
|
||||
return Singleton.get(cacheKey, (Func0<VectorStore>) () -> {
|
||||
// TODO 芋艿 @xin 这两个配置取哪好呢
|
||||
// TODO 不同模型的向量维度可能会不一样,目前看貌似是以 index 来做区分的,维度不一样存不到一个 index 上
|
||||
// TODO 回复:好的哈
|
||||
String index = "default-index";
|
||||
String prefix = "default:";
|
||||
var config = RedisVectorStore.RedisVectorStoreConfig.builder()
|
||||
.withIndexName(index)
|
||||
.withPrefix(prefix)
|
||||
.build();
|
||||
RedisProperties redisProperties = SpringUtils.getBean(RedisProperties.class);
|
||||
RedisVectorStore redisVectorStore = new RedisVectorStore(config, embeddingModel,
|
||||
new JedisPooled(redisProperties.getHost(), redisProperties.getPort()),
|
||||
true);
|
||||
redisVectorStore.afterPropertiesSet();
|
||||
return redisVectorStore;
|
||||
});
|
||||
}
|
||||
|
||||
private static String buildClientCacheKey(Class<?> clazz, Object... params) {
|
||||
if (ArrayUtil.isEmpty(params)) {
|
||||
return clazz.getName();
|
||||
}
|
||||
return StrUtil.format("{}#{}", clazz.getName(), ArrayUtil.join(params, "_"));
|
||||
}
|
||||
|
||||
}
|
Reference in New Issue
Block a user