mirror of
				https://gitee.com/hhyykk/ipms-sjy.git
				synced 2025-10-31 18:28:43 +08:00 
			
		
		
		
	【新增】AI 知识库:文档向量化 demo
This commit is contained in:
		| @@ -0,0 +1,16 @@ | ||||
| package cn.iocoder.yudao.module.ai.service.knowledge; | ||||
|  | ||||
| /** | ||||
|  * AI 知识库 Service 接口 | ||||
|  * | ||||
|  * @author xiaoxin | ||||
|  */ | ||||
| public interface DocService { | ||||
|  | ||||
|  | ||||
|     /** | ||||
|      * 向量化文档 | ||||
|      */ | ||||
|     void embeddingDoc(); | ||||
|  | ||||
| } | ||||
| @@ -0,0 +1,44 @@ | ||||
| package cn.iocoder.yudao.module.ai.service.knowledge; | ||||
|  | ||||
| import jakarta.annotation.Resource; | ||||
| import lombok.extern.slf4j.Slf4j; | ||||
| import org.springframework.ai.document.Document; | ||||
| import org.springframework.ai.reader.TextReader; | ||||
| import org.springframework.ai.transformer.splitter.TokenTextSplitter; | ||||
| import org.springframework.ai.vectorstore.RedisVectorStore; | ||||
| import org.springframework.beans.factory.annotation.Value; | ||||
| import org.springframework.stereotype.Service; | ||||
|  | ||||
| import java.util.List; | ||||
|  | ||||
| /** | ||||
|  * AI 知识库 Service 实现类 | ||||
|  * | ||||
|  * @author xiaoxin | ||||
|  */ | ||||
| @Service | ||||
| @Slf4j | ||||
| public class DocServiceImpl implements DocService { | ||||
|  | ||||
|     @Resource | ||||
|     RedisVectorStore vectorStore; | ||||
|     @Resource | ||||
|     TokenTextSplitter tokenTextSplitter; | ||||
|  | ||||
|     // TODO @xin 临时测试用,后续删 | ||||
|     @Value("classpath:/webapp/test/Fel.pdf") | ||||
|     private org.springframework.core.io.Resource data; | ||||
|  | ||||
|  | ||||
|     @Override | ||||
|     public void embeddingDoc() { | ||||
|         // 读取文件 | ||||
|         org.springframework.core.io.Resource file = data; | ||||
|         TextReader loader = new TextReader(file); | ||||
|         List<Document> documents = loader.get(); | ||||
|         // 文档分段 | ||||
|         List<Document> segments = tokenTextSplitter.apply(documents); | ||||
|         // 向量化并存储 | ||||
|         vectorStore.add(segments); | ||||
|     } | ||||
| } | ||||
| @@ -39,6 +39,22 @@ | ||||
|             <artifactId>spring-ai-stability-ai-spring-boot-starter</artifactId> | ||||
|             <version>${spring-ai.version}</version> | ||||
|         </dependency> | ||||
|         <dependency> | ||||
|             <groupId>org.springframework.ai</groupId> | ||||
|             <artifactId>spring-ai-transformers-spring-boot-starter</artifactId> | ||||
|             <version>${spring-ai.version}</version> | ||||
|         </dependency> | ||||
|         <dependency> | ||||
|             <groupId>org.springframework.ai</groupId> | ||||
|             <artifactId>spring-ai-redis-store</artifactId> | ||||
|             <version>${spring-ai.version}</version> | ||||
|         </dependency> | ||||
|         <dependency> | ||||
|             <groupId>org.springframework.data</groupId> | ||||
|             <artifactId>spring-data-redis</artifactId> | ||||
|             <optional>true</optional> | ||||
|         </dependency> | ||||
|  | ||||
|  | ||||
|         <dependency> | ||||
|             <groupId>cn.iocoder.boot</groupId> | ||||
|   | ||||
| @@ -0,0 +1,59 @@ | ||||
| /* | ||||
|  * Copyright 2023 - 2024 the original author or authors. | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
|  * you may not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * https://www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an "AS IS" BASIS, | ||||
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
| package org.springframework.ai.autoconfigure.vectorstore.redis; | ||||
|  | ||||
| import org.springframework.ai.embedding.EmbeddingModel; | ||||
| import org.springframework.ai.vectorstore.RedisVectorStore; | ||||
| import org.springframework.ai.vectorstore.RedisVectorStore.RedisVectorStoreConfig; | ||||
| import org.springframework.boot.autoconfigure.AutoConfiguration; | ||||
| import org.springframework.boot.autoconfigure.condition.ConditionalOnClass; | ||||
| import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean; | ||||
| import org.springframework.boot.autoconfigure.data.redis.RedisAutoConfiguration; | ||||
| import org.springframework.boot.context.properties.EnableConfigurationProperties; | ||||
| import org.springframework.context.annotation.Bean; | ||||
| import org.springframework.data.redis.connection.jedis.JedisConnectionFactory; | ||||
| import redis.clients.jedis.JedisPooled; | ||||
|  | ||||
| /** | ||||
|  * TODO @xin 先拿 spring-ai 最新代码覆盖,1.0.0-M1 跟 redis 自动配置会冲突 | ||||
|  * | ||||
|  * @author Christian Tzolov | ||||
|  * @author Eddú Meléndez | ||||
|  */ | ||||
| @AutoConfiguration(after = RedisAutoConfiguration.class) | ||||
| @ConditionalOnClass({JedisPooled.class, JedisConnectionFactory.class, RedisVectorStore.class, EmbeddingModel.class}) | ||||
| //@ConditionalOnBean(JedisConnectionFactory.class) | ||||
| @EnableConfigurationProperties(RedisVectorStoreProperties.class) | ||||
| public class RedisVectorStoreAutoConfiguration { | ||||
|  | ||||
|  | ||||
|  | ||||
|     @Bean | ||||
|     @ConditionalOnMissingBean | ||||
|     public RedisVectorStore vectorStore(EmbeddingModel embeddingModel, RedisVectorStoreProperties properties, | ||||
|                                         JedisConnectionFactory jedisConnectionFactory) { | ||||
|  | ||||
|         var config = RedisVectorStoreConfig.builder() | ||||
|                 .withIndexName(properties.getIndex()) | ||||
|                 .withPrefix(properties.getPrefix()) | ||||
|                 .build(); | ||||
|  | ||||
|         return new RedisVectorStore(config, embeddingModel, | ||||
|                 new JedisPooled(jedisConnectionFactory.getHostName(), jedisConnectionFactory.getPort()), | ||||
|                 properties.isInitializeSchema()); | ||||
|     } | ||||
|  | ||||
| } | ||||
| @@ -0,0 +1,456 @@ | ||||
| /* | ||||
|  * Copyright 2023 - 2024 the original author or authors. | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
|  * you may not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * https://www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an "AS IS" BASIS, | ||||
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
| package org.springframework.ai.vectorstore; | ||||
|  | ||||
| import org.slf4j.Logger; | ||||
| import org.slf4j.LoggerFactory; | ||||
| import org.springframework.ai.document.Document; | ||||
| import org.springframework.ai.embedding.EmbeddingModel; | ||||
| import org.springframework.ai.vectorstore.filter.FilterExpressionConverter; | ||||
| import org.springframework.beans.factory.InitializingBean; | ||||
| import org.springframework.util.Assert; | ||||
| import org.springframework.util.CollectionUtils; | ||||
| import redis.clients.jedis.JedisPooled; | ||||
| import redis.clients.jedis.Pipeline; | ||||
| import redis.clients.jedis.json.Path2; | ||||
| import redis.clients.jedis.search.*; | ||||
| import redis.clients.jedis.search.Schema.FieldType; | ||||
| import redis.clients.jedis.search.schemafields.*; | ||||
| import redis.clients.jedis.search.schemafields.VectorField.VectorAlgorithm; | ||||
|  | ||||
| import java.text.MessageFormat; | ||||
| import java.util.*; | ||||
| import java.util.function.Function; | ||||
| import java.util.function.Predicate; | ||||
| import java.util.stream.Collectors; | ||||
|  | ||||
| /** | ||||
|  * The RedisVectorStore is for managing and querying vector data in a Redis database. It | ||||
|  * offers functionalities like adding, deleting, and performing similarity searches on | ||||
|  * documents. | ||||
|  * | ||||
|  * The store utilizes RedisJSON and RedisSearch to handle JSON documents and to index and | ||||
|  * search vector data. It supports various vector algorithms (e.g., FLAT, HSNW) for | ||||
|  * efficient similarity searches. Additionally, it allows for custom metadata fields in | ||||
|  * the documents to be stored alongside the vector and content data. | ||||
|  * | ||||
|  * This class requires a RedisVectorStoreConfig configuration object for initialization, | ||||
|  * which includes settings like Redis URI, index name, field names, and vector algorithms. | ||||
|  * It also requires an EmbeddingModel to convert documents into embeddings before storing | ||||
|  * them. | ||||
|  * | ||||
|  * @author Julien Ruaux | ||||
|  * @author Christian Tzolov | ||||
|  * @author Eddú Meléndez | ||||
|  * @see VectorStore | ||||
|  * @see RedisVectorStoreConfig | ||||
|  * @see EmbeddingModel | ||||
|  */ | ||||
| public class RedisVectorStore implements VectorStore, InitializingBean { | ||||
|  | ||||
|     public enum Algorithm { | ||||
|  | ||||
|         FLAT, HSNW | ||||
|  | ||||
|     } | ||||
|  | ||||
|     public record MetadataField(String name, FieldType fieldType) { | ||||
|  | ||||
|         public static MetadataField text(String name) { | ||||
|             return new MetadataField(name, FieldType.TEXT); | ||||
|         } | ||||
|  | ||||
|         public static MetadataField numeric(String name) { | ||||
|             return new MetadataField(name, FieldType.NUMERIC); | ||||
|         } | ||||
|  | ||||
|         public static MetadataField tag(String name) { | ||||
|             return new MetadataField(name, FieldType.TAG); | ||||
|         } | ||||
|  | ||||
|     } | ||||
|  | ||||
|     /** | ||||
|      * Configuration for the Redis vector store. | ||||
|      */ | ||||
|     public static final class RedisVectorStoreConfig { | ||||
|  | ||||
|         private final String indexName; | ||||
|  | ||||
|         private final String prefix; | ||||
|  | ||||
|         private final String contentFieldName; | ||||
|  | ||||
|         private final String embeddingFieldName; | ||||
|  | ||||
|         private final Algorithm vectorAlgorithm; | ||||
|  | ||||
|         private final List<MetadataField> metadataFields; | ||||
|  | ||||
|         private RedisVectorStoreConfig() { | ||||
|             this(builder()); | ||||
|         } | ||||
|  | ||||
|         private RedisVectorStoreConfig(Builder builder) { | ||||
|             this.indexName = builder.indexName; | ||||
|             this.prefix = builder.prefix; | ||||
|             this.contentFieldName = builder.contentFieldName; | ||||
|             this.embeddingFieldName = builder.embeddingFieldName; | ||||
|             this.vectorAlgorithm = builder.vectorAlgorithm; | ||||
|             this.metadataFields = builder.metadataFields; | ||||
|         } | ||||
|  | ||||
|         /** | ||||
|          * Start building a new configuration. | ||||
|          * @return The entry point for creating a new configuration. | ||||
|          */ | ||||
|         public static Builder builder() { | ||||
|  | ||||
|             return new Builder(); | ||||
|         } | ||||
|  | ||||
|         /** | ||||
|          * {@return the default config} | ||||
|          */ | ||||
|         public static RedisVectorStoreConfig defaultConfig() { | ||||
|  | ||||
|             return builder().build(); | ||||
|         } | ||||
|  | ||||
|         public static class Builder { | ||||
|  | ||||
|             private String indexName = DEFAULT_INDEX_NAME; | ||||
|  | ||||
|             private String prefix = DEFAULT_PREFIX; | ||||
|  | ||||
|             private String contentFieldName = DEFAULT_CONTENT_FIELD_NAME; | ||||
|  | ||||
|             private String embeddingFieldName = DEFAULT_EMBEDDING_FIELD_NAME; | ||||
|  | ||||
|             private Algorithm vectorAlgorithm = DEFAULT_VECTOR_ALGORITHM; | ||||
|  | ||||
|             private List<MetadataField> metadataFields = new ArrayList<>(); | ||||
|  | ||||
|             private Builder() { | ||||
|             } | ||||
|  | ||||
|             /** | ||||
|              * Configures the Redis index name to use. | ||||
|              * @param name the index name to use | ||||
|              * @return this builder | ||||
|              */ | ||||
|             public Builder withIndexName(String name) { | ||||
|                 this.indexName = name; | ||||
|                 return this; | ||||
|             } | ||||
|  | ||||
|             /** | ||||
|              * Configures the Redis key prefix to use (default: "embedding:"). | ||||
|              * @param prefix the prefix to use | ||||
|              * @return this builder | ||||
|              */ | ||||
|             public Builder withPrefix(String prefix) { | ||||
|                 this.prefix = prefix; | ||||
|                 return this; | ||||
|             } | ||||
|  | ||||
|             /** | ||||
|              * Configures the Redis content field name to use. | ||||
|              * @param name the content field name to use | ||||
|              * @return this builder | ||||
|              */ | ||||
|             public Builder withContentFieldName(String name) { | ||||
|                 this.contentFieldName = name; | ||||
|                 return this; | ||||
|             } | ||||
|  | ||||
|             /** | ||||
|              * Configures the Redis embedding field name to use. | ||||
|              * @param name the embedding field name to use | ||||
|              * @return this builder | ||||
|              */ | ||||
|             public Builder withEmbeddingFieldName(String name) { | ||||
|                 this.embeddingFieldName = name; | ||||
|                 return this; | ||||
|             } | ||||
|  | ||||
|             /** | ||||
|              * Configures the Redis vector algorithmto use. | ||||
|              * @param algorithm the vector algorithm to use | ||||
|              * @return this builder | ||||
|              */ | ||||
|             public Builder withVectorAlgorithm(Algorithm algorithm) { | ||||
|                 this.vectorAlgorithm = algorithm; | ||||
|                 return this; | ||||
|             } | ||||
|  | ||||
|             public Builder withMetadataFields(MetadataField... fields) { | ||||
|                 return withMetadataFields(Arrays.asList(fields)); | ||||
|             } | ||||
|  | ||||
|             public Builder withMetadataFields(List<MetadataField> fields) { | ||||
|                 this.metadataFields = fields; | ||||
|                 return this; | ||||
|             } | ||||
|  | ||||
|             /** | ||||
|              * {@return the immutable configuration} | ||||
|              */ | ||||
|             public RedisVectorStoreConfig build() { | ||||
|  | ||||
|                 return new RedisVectorStoreConfig(this); | ||||
|             } | ||||
|  | ||||
|         } | ||||
|  | ||||
|     } | ||||
|  | ||||
|     private final boolean initializeSchema; | ||||
|  | ||||
|     public static final String DEFAULT_INDEX_NAME = "spring-ai-index"; | ||||
|  | ||||
|     public static final String DEFAULT_CONTENT_FIELD_NAME = "content"; | ||||
|  | ||||
|     public static final String DEFAULT_EMBEDDING_FIELD_NAME = "embedding"; | ||||
|  | ||||
|     public static final String DEFAULT_PREFIX = "embedding:"; | ||||
|  | ||||
|     public static final Algorithm DEFAULT_VECTOR_ALGORITHM = Algorithm.HSNW; | ||||
|  | ||||
|     private static final String QUERY_FORMAT = "%s=>[KNN %s @%s $%s AS %s]"; | ||||
|  | ||||
|     private static final Path2 JSON_SET_PATH = Path2.of("$"); | ||||
|  | ||||
|     private static final String JSON_PATH_PREFIX = "$."; | ||||
|  | ||||
|     private static final Logger logger = LoggerFactory.getLogger(RedisVectorStore.class); | ||||
|  | ||||
|     private static final Predicate<Object> RESPONSE_OK = Predicate.isEqual("OK"); | ||||
|  | ||||
|     private static final Predicate<Object> RESPONSE_DEL_OK = Predicate.isEqual(1l); | ||||
|  | ||||
|     private static final String VECTOR_TYPE_FLOAT32 = "FLOAT32"; | ||||
|  | ||||
|     private static final String EMBEDDING_PARAM_NAME = "BLOB"; | ||||
|  | ||||
|     public static final String DISTANCE_FIELD_NAME = "vector_score"; | ||||
|  | ||||
|     private static final String DEFAULT_DISTANCE_METRIC = "COSINE"; | ||||
|  | ||||
|     private final JedisPooled jedis; | ||||
|  | ||||
|     private final EmbeddingModel embeddingModel; | ||||
|  | ||||
|     private final RedisVectorStoreConfig config; | ||||
|  | ||||
|     private FilterExpressionConverter filterExpressionConverter; | ||||
|  | ||||
|     public RedisVectorStore(RedisVectorStoreConfig config, EmbeddingModel embeddingModel, JedisPooled jedis, | ||||
|                             boolean initializeSchema) { | ||||
|  | ||||
|         Assert.notNull(config, "Config must not be null"); | ||||
|         Assert.notNull(embeddingModel, "Embedding model must not be null"); | ||||
|         this.initializeSchema = initializeSchema; | ||||
|  | ||||
|         this.jedis = jedis; | ||||
|         this.embeddingModel = embeddingModel; | ||||
|         this.config = config; | ||||
|         this.filterExpressionConverter = new RedisFilterExpressionConverter(this.config.metadataFields); | ||||
|     } | ||||
|  | ||||
|     public JedisPooled getJedis() { | ||||
|         return this.jedis; | ||||
|     } | ||||
|  | ||||
|     @Override | ||||
|     public void add(List<Document> documents) { | ||||
|         try (Pipeline pipeline = this.jedis.pipelined()) { | ||||
|             for (Document document : documents) { | ||||
|                 var embedding = this.embeddingModel.embed(document); | ||||
|                 document.setEmbedding(embedding); | ||||
|  | ||||
|                 var fields = new HashMap<String, Object>(); | ||||
|                 fields.put(this.config.embeddingFieldName, embedding); | ||||
|                 fields.put(this.config.contentFieldName, document.getContent()); | ||||
|                 fields.putAll(document.getMetadata()); | ||||
|                 pipeline.jsonSetWithEscape(key(document.getId()), JSON_SET_PATH, fields); | ||||
|             } | ||||
|             List<Object> responses = pipeline.syncAndReturnAll(); | ||||
|             Optional<Object> errResponse = responses.stream().filter(Predicate.not(RESPONSE_OK)).findAny(); | ||||
|             if (errResponse.isPresent()) { | ||||
|                 String message = MessageFormat.format("Could not add document: {0}", errResponse.get()); | ||||
|                 if (logger.isErrorEnabled()) { | ||||
|                     logger.error(message); | ||||
|                 } | ||||
|                 throw new RuntimeException(message); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     private String key(String id) { | ||||
|         return this.config.prefix + id; | ||||
|     } | ||||
|  | ||||
|     @Override | ||||
|     public Optional<Boolean> delete(List<String> idList) { | ||||
|         try (Pipeline pipeline = this.jedis.pipelined()) { | ||||
|             for (String id : idList) { | ||||
|                 pipeline.jsonDel(key(id)); | ||||
|             } | ||||
|             List<Object> responses = pipeline.syncAndReturnAll(); | ||||
|             Optional<Object> errResponse = responses.stream().filter(Predicate.not(RESPONSE_DEL_OK)).findAny(); | ||||
|             if (errResponse.isPresent()) { | ||||
|                 if (logger.isErrorEnabled()) { | ||||
|                     logger.error("Could not delete document: {}", errResponse.get()); | ||||
|                 } | ||||
|                 return Optional.of(false); | ||||
|             } | ||||
|             return Optional.of(true); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     @Override | ||||
|     public List<Document> similaritySearch(SearchRequest request) { | ||||
|  | ||||
|         Assert.isTrue(request.getTopK() > 0, "The number of documents to returned must be greater than zero"); | ||||
|         Assert.isTrue(request.getSimilarityThreshold() >= 0 && request.getSimilarityThreshold() <= 1, | ||||
|                 "The similarity score is bounded between 0 and 1; least to most similar respectively."); | ||||
|  | ||||
|         String filter = nativeExpressionFilter(request); | ||||
|  | ||||
|         String queryString = String.format(QUERY_FORMAT, filter, request.getTopK(), this.config.embeddingFieldName, | ||||
|                 EMBEDDING_PARAM_NAME, DISTANCE_FIELD_NAME); | ||||
|  | ||||
|         List<String> returnFields = new ArrayList<>(); | ||||
|         this.config.metadataFields.stream().map(MetadataField::name).forEach(returnFields::add); | ||||
|         returnFields.add(this.config.embeddingFieldName); | ||||
|         returnFields.add(this.config.contentFieldName); | ||||
|         returnFields.add(DISTANCE_FIELD_NAME); | ||||
|         var embedding = toFloatArray(this.embeddingModel.embed(request.getQuery())); | ||||
|         Query query = new Query(queryString).addParam(EMBEDDING_PARAM_NAME, RediSearchUtil.toByteArray(embedding)) | ||||
|                 .returnFields(returnFields.toArray(new String[0])) | ||||
|                 .setSortBy(DISTANCE_FIELD_NAME, true) | ||||
|                 .dialect(2); | ||||
|  | ||||
|         SearchResult result = this.jedis.ftSearch(this.config.indexName, query); | ||||
|         return result.getDocuments() | ||||
|                 .stream() | ||||
|                 .filter(d -> similarityScore(d) >= request.getSimilarityThreshold()) | ||||
|                 .map(this::toDocument) | ||||
|                 .toList(); | ||||
|     } | ||||
|  | ||||
|     private Document toDocument(redis.clients.jedis.search.Document doc) { | ||||
|         var id = doc.getId().substring(this.config.prefix.length()); | ||||
|         var content = doc.hasProperty(this.config.contentFieldName) ? doc.getString(this.config.contentFieldName) | ||||
|                 : null; | ||||
|         Map<String, Object> metadata = this.config.metadataFields.stream() | ||||
|                 .map(MetadataField::name) | ||||
|                 .filter(doc::hasProperty) | ||||
|                 .collect(Collectors.toMap(Function.identity(), doc::getString)); | ||||
|         metadata.put(DISTANCE_FIELD_NAME, 1 - similarityScore(doc)); | ||||
|         return new Document(id, content, metadata); | ||||
|     } | ||||
|  | ||||
|     private float similarityScore(redis.clients.jedis.search.Document doc) { | ||||
|         return (2 - Float.parseFloat(doc.getString(DISTANCE_FIELD_NAME))) / 2; | ||||
|     } | ||||
|  | ||||
|     private String nativeExpressionFilter(SearchRequest request) { | ||||
|         if (request.getFilterExpression() == null) { | ||||
|             return "*"; | ||||
|         } | ||||
|         return "(" + this.filterExpressionConverter.convertExpression(request.getFilterExpression()) + ")"; | ||||
|     } | ||||
|  | ||||
|     @Override | ||||
|     public void afterPropertiesSet() { | ||||
|  | ||||
|         if (!this.initializeSchema) { | ||||
|             return; | ||||
|         } | ||||
|  | ||||
|         // If index already exists don't do anything | ||||
|         if (this.jedis.ftList().contains(this.config.indexName)) { | ||||
|             return; | ||||
|         } | ||||
|  | ||||
|         String response = this.jedis.ftCreate(this.config.indexName, | ||||
|                 FTCreateParams.createParams().on(IndexDataType.JSON).addPrefix(this.config.prefix), schemaFields()); | ||||
|         if (!RESPONSE_OK.test(response)) { | ||||
|             String message = MessageFormat.format("Could not create index: {0}", response); | ||||
|             throw new RuntimeException(message); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     private Iterable<SchemaField> schemaFields() { | ||||
|         Map<String, Object> vectorAttrs = new HashMap<>(); | ||||
|         vectorAttrs.put("DIM", this.embeddingModel.dimensions()); | ||||
|         vectorAttrs.put("DISTANCE_METRIC", DEFAULT_DISTANCE_METRIC); | ||||
|         vectorAttrs.put("TYPE", VECTOR_TYPE_FLOAT32); | ||||
|         List<SchemaField> fields = new ArrayList<>(); | ||||
|         fields.add(TextField.of(jsonPath(this.config.contentFieldName)).as(this.config.contentFieldName).weight(1.0)); | ||||
|         fields.add(VectorField.builder() | ||||
|                 .fieldName(jsonPath(this.config.embeddingFieldName)) | ||||
|                 .algorithm(vectorAlgorithm()) | ||||
|                 .attributes(vectorAttrs) | ||||
|                 .as(this.config.embeddingFieldName) | ||||
|                 .build()); | ||||
|  | ||||
|         if (!CollectionUtils.isEmpty(this.config.metadataFields)) { | ||||
|             for (MetadataField field : this.config.metadataFields) { | ||||
|                 fields.add(schemaField(field)); | ||||
|             } | ||||
|         } | ||||
|         return fields; | ||||
|     } | ||||
|  | ||||
|     private SchemaField schemaField(MetadataField field) { | ||||
|         String fieldName = jsonPath(field.name); | ||||
|         switch (field.fieldType) { | ||||
|             case NUMERIC: | ||||
|                 return NumericField.of(fieldName).as(field.name); | ||||
|             case TAG: | ||||
|                 return TagField.of(fieldName).as(field.name); | ||||
|             case TEXT: | ||||
|                 return TextField.of(fieldName).as(field.name); | ||||
|             default: | ||||
|                 throw new IllegalArgumentException( | ||||
|                         MessageFormat.format("Field {0} has unsupported type {1}", field.name, field.fieldType)); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     private VectorAlgorithm vectorAlgorithm() { | ||||
|         if (config.vectorAlgorithm == Algorithm.HSNW) { | ||||
|             return VectorAlgorithm.HNSW; | ||||
|         } | ||||
|         return VectorAlgorithm.FLAT; | ||||
|     } | ||||
|  | ||||
|     private String jsonPath(String field) { | ||||
|         return JSON_PATH_PREFIX + field; | ||||
|     } | ||||
|  | ||||
|     private static float[] toFloatArray(List<Double> embeddingDouble) { | ||||
|         float[] embeddingFloat = new float[embeddingDouble.size()]; | ||||
|         int i = 0; | ||||
|         for (Double d : embeddingDouble) { | ||||
|             embeddingFloat[i++] = d.floatValue(); | ||||
|         } | ||||
|         return embeddingFloat; | ||||
|     } | ||||
|  | ||||
| } | ||||
										
											Binary file not shown.
										
									
								
							| @@ -153,6 +153,10 @@ spring: | ||||
|  | ||||
| spring: | ||||
|   ai: | ||||
|     vectorstore: | ||||
|       redis: | ||||
|         index: default-index | ||||
|         prefix: "default:" | ||||
|     qianfan: # 文心一言 | ||||
|       api-key: x0cuLZ7XsaTCU08vuJWO87Lg | ||||
|       secret-key: R9mYF9dl9KASgi5RUq0FQt3wRisSnOcK | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 xiaoxin
					xiaoxin