from ragflow_sdk import RAGFlow import os import re ## home api_key = "ragflow-MyMjM2ODE2NThlMTExZjBiMzJlNzY5Mj" base_url = "http://127.0.0.1:8099" ## 公司内网 base_url = "http://192.168.107.165:8099" api_key = "ragflow-I5ZDNjMWNhNTdlMjExZjBiOTEwMzI0ZT" rag_object = RAGFlow(api_key=api_key, base_url=base_url) def choose_from_list(options, prompt): for idx, item in enumerate(options): print(f"{idx + 1}. {item}") while True: choice = input(prompt) if choice.isdigit() and 1 <= int(choice) <= len(options): return options[int(choice) - 1] else: print("输入无效,请重新输入编号。") def select_files(file_path, file_type="pdf"): """ 选择file_path中的所有指定类型文件(默认pdf), 返回文件路径列表 """ file_list = [] for root, dirs, files in os.walk(file_path): for file in files: if file.lower().endswith(f".{file_type.lower()}"): file_list.append(os.path.join(root, file)) return file_list def pair_pdf_and_txt(pdf_path, txt_path): """ 将pdf和txt文件对齐, 返回对齐pdf_dict和txt_dict, pdf_dict和txt_dict的key为文件名(不含后缀),value为文件路径 txt_dict仅收入与pdf_dict中存在的文件, 如果pdf_dict中有文件名没有对应的txt文件,则不收入txt_dict """ pdf_files = select_files(pdf_path, "pdf") txt_files = select_files(txt_path, "txt") # 构建文件名到路径的映射 pdf_dict = {os.path.splitext(os.path.basename(f))[0]: f for f in pdf_files} txt_dict_all = {os.path.splitext(os.path.basename(f))[0]: f for f in txt_files} # 只保留有对应txt的pdf pdf_dict_aligned = {} txt_dict_aligned = {} for name in pdf_dict: if name in txt_dict_all: pdf_dict_aligned[name] = pdf_dict[name] txt_dict_aligned[name] = txt_dict_all[name] return pdf_dict_aligned, txt_dict_aligned def select_dataset(rag_object): """选择可用数据集""" datasets = rag_object.list_datasets() if not datasets: print("没有可用的数据集。") return None dataset_names = [ds.name for ds in datasets] dataset_name = choose_from_list(dataset_names, "请选择数据集编号:") return [ds for ds in datasets if ds.name == dataset_name][0] def upload_or_get_document(dataset, pdf_path, display_name): """上传或获取已存在的文档""" try: document = dataset.list_documents(name=display_name)[0] print(f"文档已存在: {display_name},跳过上传。") return document except Exception: try: with open(pdf_path, "rb") as f: blob = f.read() dataset.upload_documents([{"display_name": display_name, "blob": blob}]) return dataset.list_documents(name=display_name)[0] except Exception as e: print(f"上传PDF失败: {pdf_path},错误: {e}") return None def divid_txt_chunk_img(txt_chunk): """分离文本块中的图片链接和纯文本内容 输入格式示例: "这是文本内容![image](路径/IMAGE1.png)更多文本![image](路径/IMAGE2.png)" 返回: clean_text: 移除所有图片链接后的纯文本内容 image_paths: 提取到的图片路径列表 """ # 正则表达式匹配Markdown图片格式: ![alt_text](path) pattern = r'!\[.*?\]\((.*?)\)' # 提取所有图片路径 image_paths = re.findall(pattern, txt_chunk) # 移除所有图片标记 clean_text = re.sub(pattern, '', txt_chunk) # 移除多余空行并清理首尾空白 clean_text = re.sub(r'\n\s*\n', '\n\n', clean_text).strip() return clean_text, image_paths def upload_images_to_minio(image_paths, document): """ 上传图片到MinIO, """ def process_txt_chunks(document, txt_path): """处理文本分块并添加到文档""" try: with open(txt_path, 'r', encoding='utf-8') as file: file_content = file.read() for num, txt_chunk in enumerate(file_content.split('\n\n')): if txt_chunk.strip(): print(f"处理文本块: {txt_chunk[:30]}...") chunk = document.add_chunk(content=txt_chunk) print(f"第{num+1} Chunk添加成功! ID: {chunk.id}") except Exception as e: print(f"处理文本文件时出错: {txt_path},错误: {e}") def process_pdf_txt_pairs(pdf_dict, txt_dict, dataset): """处理PDF-TXT文件对""" for name, pdf_path in pdf_dict.items(): display_name = os.path.basename(pdf_path) document = upload_or_get_document(dataset, pdf_path, display_name) if not document: continue txt_path = txt_dict.get(name) if txt_path: process_txt_chunks(document, txt_path) def main(): """主函数,处理PDF和TXT文件对 dataset.id = bucket_name chunk_id = object_name """ file_path = "g:\\11\\22\\规范\\" #pdf_dict, txt_dict = pair_pdf_and_txt(file_path, file_path) # if not pdf_dict: # print("未选择任何文件。") # return dataset = select_dataset(rag_object) print(f"选择的数据集: {dataset.name}") print(f"选择的数据集id: {dataset.id}") if not dataset: print("未选择数据集。") return #process_pdf_txt_pairs(pdf_dict, txt_dict, dataset) if __name__ == "__main__": main()