Compare commits
	
		
			2 Commits
		
	
	
		
			b4769d2ec1
			...
			40211521a2
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 40211521a2 | |||
| 2cc9dbfcd0 | 
							
								
								
									
										192
									
								
								src/add_chunk_cli_pdf_img.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										192
									
								
								src/add_chunk_cli_pdf_img.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,192 @@ | ||||
| from ragflow_sdk import RAGFlow | ||||
| import os | ||||
| import re | ||||
| ## home | ||||
| api_key = "ragflow-MyMjM2ODE2NThlMTExZjBiMzJlNzY5Mj" | ||||
| base_url = "http://127.0.0.1:8099" | ||||
|  | ||||
|  | ||||
| ## 公司内网 | ||||
| base_url = "http://192.168.107.165:8099" | ||||
| api_key = "ragflow-I5ZDNjMWNhNTdlMjExZjBiOTEwMzI0ZT" | ||||
| rag_object = RAGFlow(api_key=api_key, base_url=base_url) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| def choose_from_list(options, prompt): | ||||
|     for idx, item in enumerate(options): | ||||
|         print(f"{idx + 1}. {item}") | ||||
|     while True: | ||||
|         choice = input(prompt) | ||||
|         if choice.isdigit() and 1 <= int(choice) <= len(options): | ||||
|             return options[int(choice) - 1] | ||||
|         else: | ||||
|             print("输入无效,请重新输入编号。") | ||||
|  | ||||
|  | ||||
| def select_files(file_path, file_type="pdf"): | ||||
|     """ | ||||
|     选择file_path中的所有指定类型文件(默认pdf), | ||||
|     返回文件路径列表 | ||||
|     """ | ||||
|     file_list = [] | ||||
|     for root, dirs, files in os.walk(file_path): | ||||
|         for file in files: | ||||
|             if file.lower().endswith(f".{file_type.lower()}"): | ||||
|                 file_list.append(os.path.join(root, file)) | ||||
|     return file_list | ||||
|  | ||||
|  | ||||
| def pair_pdf_and_txt(pdf_path, txt_path): | ||||
|     """ | ||||
|     将pdf和txt文件对齐, | ||||
|     返回对齐pdf_dict和txt_dict, | ||||
|     pdf_dict和txt_dict的key为文件名(不含后缀),value为文件路径 | ||||
|     txt_dict仅收入与pdf_dict中存在的文件, | ||||
|     如果pdf_dict中有文件名没有对应的txt文件,则不收入txt_dict | ||||
|     """ | ||||
|     pdf_files = select_files(pdf_path, "pdf") | ||||
|     txt_files = select_files(txt_path, "txt") | ||||
|  | ||||
|     # 构建文件名到路径的映射 | ||||
|     pdf_dict = {os.path.splitext(os.path.basename(f))[0]: f for f in pdf_files} | ||||
|     txt_dict_all = {os.path.splitext(os.path.basename(f))[0]: f for f in txt_files} | ||||
|  | ||||
|     # 只保留有对应txt的pdf | ||||
|     pdf_dict_aligned = {} | ||||
|     txt_dict_aligned = {} | ||||
|     for name in pdf_dict: | ||||
|         if name in txt_dict_all: | ||||
|             pdf_dict_aligned[name] = pdf_dict[name] | ||||
|             txt_dict_aligned[name] = txt_dict_all[name] | ||||
|  | ||||
|     return pdf_dict_aligned, txt_dict_aligned | ||||
|  | ||||
|  | ||||
| def select_dataset(rag_object): | ||||
|     """选择可用数据集""" | ||||
|     datasets = rag_object.list_datasets() | ||||
|     if not datasets: | ||||
|         print("没有可用的数据集。") | ||||
|         return None | ||||
|      | ||||
|     dataset_names = [ds.name for ds in datasets] | ||||
|     dataset_name = choose_from_list(dataset_names, "请选择数据集编号:") | ||||
|     return [ds for ds in datasets if ds.name == dataset_name][0] | ||||
|  | ||||
| def upload_or_get_document(dataset, pdf_path, display_name): | ||||
|     """上传或获取已存在的文档""" | ||||
|     try: | ||||
|         document = dataset.list_documents(name=display_name)[0] | ||||
|         print(f"文档已存在: {display_name},跳过上传。") | ||||
|         return document | ||||
|     except Exception: | ||||
|         try: | ||||
|             with open(pdf_path, "rb") as f: | ||||
|                 blob = f.read() | ||||
|             dataset.upload_documents([{"display_name": display_name, "blob": blob}]) | ||||
|             return dataset.list_documents(name=display_name)[0] | ||||
|         except Exception as e: | ||||
|             print(f"上传PDF失败: {pdf_path},错误: {e}") | ||||
|             return None | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| def divid_txt_chunk_img(txt_chunk): | ||||
|     """分离文本块中的图片链接和纯文本内容 | ||||
|      | ||||
|     输入格式示例:  | ||||
|         "这是文本内容更多文本" | ||||
|      | ||||
|     返回: | ||||
|         clean_text: 移除所有图片链接后的纯文本内容 | ||||
|         image_paths: 提取到的图片路径列表 | ||||
|     """ | ||||
|     # 正则表达式匹配Markdown图片格式:  | ||||
|     pattern = r'!\[.*?\]\((.*?)\)' | ||||
|      | ||||
|     # 提取所有图片路径 | ||||
|     image_paths = re.findall(pattern, txt_chunk) | ||||
|      | ||||
|     # 移除所有图片标记 | ||||
|     clean_text = re.sub(pattern, '', txt_chunk) | ||||
|      | ||||
|     # 移除多余空行并清理首尾空白 | ||||
|     clean_text = re.sub(r'\n\s*\n', '\n\n', clean_text).strip() | ||||
|      | ||||
|     return clean_text, image_paths | ||||
|  | ||||
| def upload_images_to_minio(image_paths, document): | ||||
|     """ | ||||
|     上传图片到MinIO, | ||||
|      | ||||
|     """ | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| def process_txt_chunks(document, txt_path): | ||||
|     """处理文本分块并添加到文档""" | ||||
|     try: | ||||
|         with open(txt_path, 'r', encoding='utf-8') as file: | ||||
|             file_content = file.read() | ||||
|          | ||||
|         for num, txt_chunk in enumerate(file_content.split('\n\n')): | ||||
|             if txt_chunk.strip(): | ||||
|                 print(f"处理文本块: {txt_chunk[:30]}...") | ||||
|                 chunk = document.add_chunk(content=txt_chunk) | ||||
|                 print(f"第{num+1} Chunk添加成功! ID: {chunk.id}") | ||||
|                  | ||||
|     except Exception as e: | ||||
|         print(f"处理文本文件时出错: {txt_path},错误: {e}") | ||||
|  | ||||
| def process_pdf_txt_pairs(pdf_dict, txt_dict, dataset): | ||||
|     """处理PDF-TXT文件对""" | ||||
|     for name, pdf_path in pdf_dict.items(): | ||||
|         display_name = os.path.basename(pdf_path) | ||||
|         document = upload_or_get_document(dataset, pdf_path, display_name) | ||||
|         if not document: | ||||
|             continue | ||||
|              | ||||
|         txt_path = txt_dict.get(name) | ||||
|         if txt_path: | ||||
|             process_txt_chunks(document, txt_path) | ||||
|  | ||||
| def main(): | ||||
|  | ||||
|     """主函数,处理PDF和TXT文件对 | ||||
|      | ||||
|     dataset.id = bucket_name | ||||
|     chunk_id = object_name | ||||
|     """ | ||||
|     file_path = "g:\\11\\22\\规范\\" | ||||
|     #pdf_dict, txt_dict = pair_pdf_and_txt(file_path, file_path) | ||||
|      | ||||
|     # if not pdf_dict: | ||||
|     #     print("未选择任何文件。") | ||||
|     #     return | ||||
|          | ||||
|     dataset = select_dataset(rag_object) | ||||
|     print(f"选择的数据集: {dataset.name}") | ||||
|     print(f"选择的数据集id: {dataset.id}") | ||||
|     if not dataset: | ||||
|         print("未选择数据集。") | ||||
|         return | ||||
|          | ||||
|     #process_pdf_txt_pairs(pdf_dict, txt_dict, dataset) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     main() | ||||
		Reference in New Issue
	
	Block a user