From 73557a272d860e1bb3b942849fa18be5fb7835ae Mon Sep 17 00:00:00 2001 From: glowzz <24627181@qq.com> Date: Wed, 30 Jul 2025 12:48:11 +0800 Subject: [PATCH] =?UTF-8?q?=E5=AE=9E=E7=8E=B0=E6=99=BA=E8=83=BD=E6=A8=A1?= =?UTF-8?q?=E7=B3=8A=E6=96=87=E6=9C=AC=E6=9F=A5=E6=89=BE=E5=8A=9F=E8=83=BD?= =?UTF-8?q?=EF=BC=8C=E6=94=AF=E6=8C=81=E7=B2=BE=E7=A1=AE=E3=80=81=E6=A8=A1?= =?UTF-8?q?=E7=B3=8A=E5=92=8C=E9=83=A8=E5=88=86=E5=8C=B9=E9=85=8D=EF=BC=8C?= =?UTF-8?q?=E4=BC=98=E5=8C=96=E6=96=87=E6=9C=AC=E5=9D=90=E6=A0=87=E8=BF=94?= =?UTF-8?q?=E5=9B=9E=E9=80=BB=E8=BE=91?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- src/get_pos_pdf.py | 576 ++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 537 insertions(+), 39 deletions(-) diff --git a/src/get_pos_pdf.py b/src/get_pos_pdf.py index 3bc8378..3ecf2f4 100644 --- a/src/get_pos_pdf.py +++ b/src/get_pos_pdf.py @@ -1,6 +1,8 @@ import requests import io import os +import re +from difflib import SequenceMatcher from pdfminer.pdfdocument import PDFDocument from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser @@ -44,6 +46,386 @@ def normalize_text(text): normalized = re.sub(r'\s+', ' ', text.strip()) return normalized + +def clean_text_for_fuzzy_match(text): + """清理文本用于模糊匹配,移除特殊字符,只保留字母数字和空格""" + # 移除标点符号和特殊字符,只保留字母、数字、中文字符和空格 + cleaned = re.sub(r'[^\w\s\u4e00-\u9fff]', '', text) + # 标准化空白字符 + cleaned = re.sub(r'\s+', ' ', cleaned.strip()) + return cleaned +def find_fuzzy_text_positions(pdf_path, target_text, similarity_threshold=0.8): + """ + 在PDF中模糊查找指定文本并返回坐标 + + Args: + pdf_path (str): PDF文件路径 + target_text (str): 要查找的文本 + similarity_threshold (float): 相似度阈值 (0-1),默认0.8 + + Returns: + list: 包含匹配文本坐标信息的列表 + """ + if not os.path.exists(pdf_path): + raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") + + # 清理目标文本 + cleaned_target = clean_text_for_fuzzy_match(target_text) + + # 打开本地PDF文件 + with open(pdf_path, 'rb') as fp: + parser = PDFParser(fp) + doc = PDFDocument(parser) + + rsrcmgr = PDFResourceManager() + laparams = LAParams() + device = PDFPageAggregator(rsrcmgr, laparams=laparams) + interpreter = PDFPageInterpreter(rsrcmgr, device) + + found_positions = [] + + # 处理每一页 + for page_num, page in enumerate(PDFPage.create_pages(doc), 1): + interpreter.process_page(page) + layout = device.get_result() + char_list = parse_char_layout(layout) + + # 将页面字符组合成文本 + page_text = ''.join([char_info['char'] for char_info in char_list]) + cleaned_page_text = clean_text_for_fuzzy_match(page_text) + + # 滑动窗口查找相似文本 + target_len = len(cleaned_target) + if target_len == 0: + continue + + # 存储所有匹配的块 + matches = [] + for i in range(len(cleaned_page_text) - target_len + 1): + window_text = cleaned_page_text[i:i + target_len] + similarity = SequenceMatcher(None, cleaned_target, window_text).ratio() + + if similarity >= similarity_threshold: + # 找到匹配项,记录位置和相似度 + if i < len(char_list): + matches.append({ + 'start_idx': i, + 'end_idx': min(i + target_len - 1, len(char_list) - 1), + 'similarity': similarity + }) + + # 合并相邻的匹配块 + if matches: + # 按起始位置排序 + matches.sort(key=lambda x: x['start_idx']) + + # 合并相邻或重叠的匹配块 + merged_matches = [] + current_match = matches[0].copy() # 创建副本 + + for i in range(1, len(matches)): + next_match = matches[i] + # 如果下一个匹配块与当前块相邻或重叠,则合并 + # 判断条件:下一个块的起始位置 <= 当前块的结束位置 + 一些缓冲距离 + if next_match['start_idx'] <= current_match['end_idx'] + min(target_len, 10): + # 合并索引范围 + current_match['start_idx'] = min(current_match['start_idx'], next_match['start_idx']) + current_match['end_idx'] = max(current_match['end_idx'], next_match['end_idx']) + # 计算加权平均相似度 + total_length = (current_match['end_idx'] - current_match['start_idx'] + 1) + \ + (next_match['end_idx'] - next_match['start_idx'] + 1) + current_match['similarity'] = ( + current_match['similarity'] * (current_match['end_idx'] - current_match['start_idx'] + 1) + + next_match['similarity'] * (next_match['end_idx'] - next_match['start_idx'] + 1) + ) / total_length + else: + # 不相邻,保存当前块,开始新的块 + merged_matches.append(current_match) + current_match = next_match.copy() # 创建副本 + + # 添加最后一个块 + merged_matches.append(current_match) + + # 为每个合并后的块生成坐标信息 + for match in merged_matches: + start_idx = match['start_idx'] + end_idx = match['end_idx'] + + if start_idx < len(char_list) and end_idx < len(char_list): + # 获取匹配区域的所有字符 + matched_chars = char_list[start_idx:end_idx+1] + + # 过滤掉坐标为0的字符(通常是特殊字符) + valid_chars = [char for char in matched_chars + if char['x'] > 0 and char['y'] > 0] + + # 如果没有有效字符,则使用所有字符 + chars_to_use = valid_chars if valid_chars else matched_chars + + # 计算边界框 (left, right, top, bottom) + if chars_to_use: + # 计算边界值 + left = min([char['x'] for char in chars_to_use]) + right = max([char['x'] for char in chars_to_use]) + bottom = min([char['y'] for char in chars_to_use]) + top = max([char['y'] for char in chars_to_use]) + + # 获取匹配的文本内容 + matched_text = ''.join([char_info['char'] for char_info in chars_to_use]) + + # 只有当边界框有效时才添加结果 + if left >= 0 and right > left and top > bottom: + position = [ + page_num, + left, # left + right, # right + top, # top + bottom, # bottom + matched_text, # 添加匹配的内容 + match['similarity'] # 添加相似度信息 + ] + found_positions.append(position) + + return found_positions + """ + 在PDF中模糊查找指定文本并返回坐标 + + Args: + pdf_path (str): PDF文件路径 + target_text (str): 要查找的文本 + similarity_threshold (float): 相似度阈值 (0-1),默认0.8 + + Returns: + list: 包含匹配文本坐标信息的列表 + """ + if not os.path.exists(pdf_path): + raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") + + # 清理目标文本 + cleaned_target = clean_text_for_fuzzy_match(target_text) + + # 打开本地PDF文件 + with open(pdf_path, 'rb') as fp: + parser = PDFParser(fp) + doc = PDFDocument(parser) + + rsrcmgr = PDFResourceManager() + laparams = LAParams() + device = PDFPageAggregator(rsrcmgr, laparams=laparams) + interpreter = PDFPageInterpreter(rsrcmgr, device) + + found_positions = [] + + # 处理每一页 + for page_num, page in enumerate(PDFPage.create_pages(doc), 1): + interpreter.process_page(page) + layout = device.get_result() + char_list = parse_char_layout(layout) + + # 将页面字符组合成文本 + page_text = ''.join([char_info['char'] for char_info in char_list]) + cleaned_page_text = clean_text_for_fuzzy_match(page_text) + + # 滑动窗口查找相似文本 + target_len = len(cleaned_target) + if target_len == 0: + continue + + # 存储所有匹配的块 + matches = [] + for i in range(len(cleaned_page_text) - target_len + 1): + window_text = cleaned_page_text[i:i + target_len] + similarity = SequenceMatcher(None, cleaned_target, window_text).ratio() + + if similarity >= similarity_threshold: + # 找到匹配项,记录位置和相似度 + if i < len(char_list): + matches.append({ + 'start_idx': i, + 'end_idx': min(i + target_len - 1, len(char_list) - 1), + 'similarity': similarity + }) + + # 合并相邻的匹配块 + if matches: + # 按起始位置排序 + matches.sort(key=lambda x: x['start_idx']) + + # 合并相邻或重叠的匹配块 + merged_matches = [] + current_match = matches[0].copy() # 创建副本 + + for i in range(1, len(matches)): + next_match = matches[i] + # 如果下一个匹配块与当前块相邻或重叠,则合并 + # 判断条件:下一个块的起始位置 <= 当前块的结束位置 + 一些缓冲距离 + if next_match['start_idx'] <= current_match['end_idx'] + min(target_len, 10): + # 合并索引范围 + current_match['start_idx'] = min(current_match['start_idx'], next_match['start_idx']) + current_match['end_idx'] = max(current_match['end_idx'], next_match['end_idx']) + # 计算加权平均相似度 + total_length = (current_match['end_idx'] - current_match['start_idx'] + 1) + \ + (next_match['end_idx'] - next_match['start_idx'] + 1) + current_match['similarity'] = ( + current_match['similarity'] * (current_match['end_idx'] - current_match['start_idx'] + 1) + + next_match['similarity'] * (next_match['end_idx'] - next_match['start_idx'] + 1) + ) / total_length + else: + # 不相邻,保存当前块,开始新的块 + merged_matches.append(current_match) + current_match = next_match.copy() # 创建副本 + + # 添加最后一个块 + merged_matches.append(current_match) + + # 为每个合并后的块生成坐标信息 + for match in merged_matches: + start_idx = match['start_idx'] + end_idx = match['end_idx'] + + if start_idx < len(char_list) and end_idx < len(char_list): + # 获取匹配区域的所有字符 + matched_chars = char_list[start_idx:end_idx+1] + + # 计算边界框 (left, right, top, bottom) + if matched_chars: + # 计算边界值 + left = min([char['x'] for char in matched_chars]) + right = max([char['x'] for char in matched_chars]) + bottom = min([char['y'] for char in matched_chars]) + top = max([char['y'] for char in matched_chars]) + + # 获取匹配的文本内容 + matched_text = ''.join([char_info['char'] for char_info in matched_chars]) + + position = [ + page_num, + left, # left + right, # right + top, # top + bottom, # bottom + matched_text, # 添加匹配的内容 + match['similarity'] # 添加相似度信息 + ] + found_positions.append(position) + + return found_positions + """ + 在PDF中模糊查找指定文本并返回坐标 + + Args: + pdf_path (str): PDF文件路径 + target_text (str): 要查找的文本 + similarity_threshold (float): 相似度阈值 (0-1),默认0.8 + + Returns: + list: 包含匹配文本坐标信息的列表 + """ + if not os.path.exists(pdf_path): + raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") + + # 清理目标文本 + cleaned_target = clean_text_for_fuzzy_match(target_text) + + # 打开本地PDF文件 + with open(pdf_path, 'rb') as fp: + parser = PDFParser(fp) + doc = PDFDocument(parser) + + rsrcmgr = PDFResourceManager() + laparams = LAParams() + device = PDFPageAggregator(rsrcmgr, laparams=laparams) + interpreter = PDFPageInterpreter(rsrcmgr, device) + + found_positions = [] + + # 处理每一页 + for page_num, page in enumerate(PDFPage.create_pages(doc), 1): + interpreter.process_page(page) + layout = device.get_result() + char_list = parse_char_layout(layout) + + # 将页面字符组合成文本 + page_text = ''.join([char_info['char'] for char_info in char_list]) + cleaned_page_text = clean_text_for_fuzzy_match(page_text) + + # 滑动窗口查找相似文本 + target_len = len(cleaned_target) + if target_len == 0: + continue + + # 存储所有匹配的块 + matches = [] + for i in range(len(cleaned_page_text) - target_len + 1): + window_text = cleaned_page_text[i:i + target_len] + similarity = SequenceMatcher(None, cleaned_target, window_text).ratio() + + if similarity >= similarity_threshold: + # 找到匹配项,记录位置和相似度 + if i < len(char_list): + matches.append({ + 'start_idx': i, + 'end_idx': min(i + target_len - 1, len(char_list) - 1), + 'similarity': similarity + }) + + # 合并相邻的匹配块 + if matches: + # 按起始位置排序 + matches.sort(key=lambda x: x['start_idx']) + + # 合并相邻或重叠的匹配块 + merged_matches = [] + current_match = matches[0] + + for i in range(1, len(matches)): + next_match = matches[i] + # 如果下一个匹配块与当前块相邻或重叠,则合并 + if next_match['start_idx'] <= current_match['end_idx'] + target_len: + # 合并索引范围 + current_match['end_idx'] = max(current_match['end_idx'], next_match['end_idx']) + # 平均相似度 + current_match['similarity'] = (current_match['similarity'] + next_match['similarity']) / 2 + else: + # 不相邻,保存当前块,开始新的块 + merged_matches.append(current_match) + current_match = next_match + + # 添加最后一个块 + merged_matches.append(current_match) + + # 为每个合并后的块生成坐标信息 + for match in merged_matches: + start_idx = match['start_idx'] + end_idx = match['end_idx'] + + if start_idx < len(char_list) and end_idx < len(char_list): + # 获取匹配区域的所有字符 + matched_chars = char_list[start_idx:end_idx+1] + + # 计算边界框 (left, right, top, bottom) + if matched_chars: + # 计算边界值 + left = min([char['x'] for char in matched_chars]) + right = max([char['x'] for char in matched_chars]) + bottom = min([char['y'] for char in matched_chars]) + top = max([char['y'] for char in matched_chars]) + + # 获取匹配的文本内容 + matched_text = ''.join([char_info['char'] for char_info in matched_chars]) + + position = [ + page_num, + left, # left + right, # right + top, # top + bottom, # bottom + matched_text, # 添加匹配的内容 + match['similarity'] # 添加相似度信息 + ] + found_positions.append(position) + + return found_positions def find_text_positions(pdf_path, target_text): """ 在PDF中查找指定文本并返回坐标 @@ -106,15 +488,25 @@ def find_text_positions(pdf_path, target_text): if pos >= page_start: page_num = i + 1 - position_info = { - 'page': page_num, - 'text': normalized_target, - 'start_x': start_char['x'], - 'start_y': start_char['y'], - 'end_x': end_char['x'], - 'end_y': end_char['y'] - } - found_positions.append(position_info) + # 获取匹配的文本内容 + matched_text = ''.join([char_info['char'] for char_info in all_chars[pos:pos+len(normalized_target)]]) + + # 计算边界框 (left, right, top, bottom) + left = min(start_char['x'], end_char['x']) + right = max(start_char['x'], end_char['x']) + bottom = min(start_char['y'], end_char['y']) + top = max(start_char['y'], end_char['y']) + + position=[ + page_num, + left, # left + right, # right + top, # top + bottom, # bottom + matched_text, # 添加匹配的内容 + 1.0 # 添加相似度信息(精确匹配为1.0) + ] + found_positions.append(position) start = pos + 1 @@ -169,47 +561,153 @@ def find_text_in_pdf_per_page(pdf_path, target_text): if end_pos < len(char_list): end_char = char_list[end_pos] - position_info = { - 'page': page_num, - 'text': normalized_target, - 'start_x': start_char['x'], - 'start_y': start_char['y'], - 'end_x': end_char['x'], - 'end_y': end_char['y'] - } - found_positions.append(position_info) + # 获取匹配的文本内容 + matched_text = ''.join([char_info['char'] for char_info in char_list[pos:pos+len(normalized_target)]]) + + # 计算边界框 (left, right, top, bottom) + left = min(start_char['x'], end_char['x']) + right = max(start_char['x'], end_char['x']) + bottom = min(start_char['y'], end_char['y']) + top = max(start_char['y'], end_char['y']) + + position=[ + page_num, + left, # left + right, # right + top, # top + bottom, # bottom + matched_text, # 添加匹配的内容 + 1.0 # 添加相似度信息(精确匹配为1.0) + ] + found_positions.append(position) return found_positions - - - - - +def find_partial_text_positions(pdf_path, target_text, min_match_ratio=0.7): + """ + 查找部分匹配的文本(适用于较长的文本) + + Args: + pdf_path (str): PDF文件路径 + target_text (str): 要查找的文本 + min_match_ratio (float): 最小匹配比例 (0-1) + + Returns: + list: 包含匹配文本坐标信息的列表 + """ + if not os.path.exists(pdf_path): + raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") + + # 将目标文本分割成关键词或短语 + normalized_target = normalize_text(target_text) + # 提取关键词(移除常见停用词后的词) + keywords = [word for word in normalized_target.split() if len(word) > 2] + + if not keywords: + keywords = normalized_target.split() # 如果没有长词,则使用所有词 + + # 打开本地PDF文件 + with open(pdf_path, 'rb') as fp: + parser = PDFParser(fp) + doc = PDFDocument(parser) + + rsrcmgr = PDFResourceManager() + laparams = LAParams() + device = PDFPageAggregator(rsrcmgr, laparams=laparams) + interpreter = PDFPageInterpreter(rsrcmgr, device) + + found_positions = [] + + # 处理每一页 + for page_num, page in enumerate(PDFPage.create_pages(doc), 1): + interpreter.process_page(page) + layout = device.get_result() + char_list = parse_char_layout(layout) + + # 将页面字符组合成文本并标准化 + page_text = ''.join([char_info['char'] for char_info in char_list]) + normalized_page_text = normalize_text(page_text) + + # 计算匹配的关键词数量 + matched_keywords = 0 + for keyword in keywords: + if keyword in normalized_page_text: + matched_keywords += 1 + + # 如果匹配的关键词比例超过阈值,则认为找到匹配 + if len(keywords) > 0 and (matched_keywords / len(keywords)) >= min_match_ratio: + # 简单起见,返回页面第一个字符和最后一个字符的坐标 + if char_list: + start_char = char_list[0] + end_char = char_list[-1] + match_ratio = matched_keywords / len(keywords) + + # 获取页面文本作为匹配内容 + matched_text = ''.join([char_info['char'] for char_info in char_list]) + + # 计算边界框 (left, right, top, bottom) + left = min(start_char['x'], end_char['x']) + right = max(start_char['x'], end_char['x']) + bottom = min(start_char['y'], end_char['y']) + top = max(start_char['y'], end_char['y']) + + position = [ + page_num, + left, # left + right, # right + top, # top + bottom, # bottom + matched_text[:100] + "..." if len(matched_text) > 100 else matched_text, # 添加匹配的内容(限制长度) + match_ratio # 添加匹配比例信息 + ] + found_positions.append(position) + + return found_positions +def smart_fuzzy_find_text(pdf_path, target_text, similarity_threshold=0.8): + """ + 智能模糊文本查找,结合多种方法 + + Args: + pdf_path (str): PDF文件路径 + target_text (str): 要查找的文本 + similarity_threshold (float): 相似度阈值 + + Returns: + list: 包含匹配文本坐标信息的列表 + """ + # 方法1: 精确匹配 + exact_results = find_text_in_pdf_per_page(pdf_path, target_text) + if exact_results: + return exact_results + + # 方法2: 模糊匹配 + fuzzy_results = find_fuzzy_text_positions(pdf_path, target_text, similarity_threshold) + if fuzzy_results: + return fuzzy_results + + # 方法3: 部分匹配(关键词匹配) + partial_results = find_partial_text_positions(pdf_path, target_text, 0.5) + return partial_results if __name__ == '__main__': # 使用本地PDF文件 pdf_file_path = 'F:\\gitea\\ragflow_api_test\\ai协作方式.pdf' # 修改为你的PDF文件路径 - target_text = '''执行方式: -• 在当前 chat 中,已有上下文,但可能混乱 -• 新开一个 chat,干净的上下文,需要填充''' - + target_text = '''创建 `plan` 文件: 固化和锁定最终的"怎么做" +• 基于 `plan` 执行: 精准驱动 AI 完成任务''' + try: - print("方法1:全文搜索") - positions = find_text_positions(pdf_file_path, target_text) + print("智能模糊查找:") + positions = smart_fuzzy_find_text(pdf_file_path, target_text, similarity_threshold=0.7) + if positions: print(f"找到文本在以下位置:") for pos in positions: - print(f"页面: {pos['page']}, 起始坐标: ({pos['start_x']:.2f}, {pos['start_y']:.2f}), 结束坐标: ({pos['end_x']:.2f}, {pos['end_y']:.2f})") - else: - print("未找到文本") - - print("\n方法2:逐页搜索") - positions = find_text_in_pdf_per_page(pdf_file_path, target_text) - if positions: - print(f"找到文本在以下位置:") - for pos in positions: - print(f"页面: {pos['page']}, 起始坐标: ({pos['start_x']:.2f}, {pos['start_y']:.2f}), 结束坐标: ({pos['end_x']:.2f}, {pos['end_y']:.2f})") + if len(pos) >= 7: # 包含匹配内容和相似度信息 + print(f"页面: {pos[0]}, 边界框: Left({pos[1]:.2f}), Right({pos[2]:.2f}), Top({pos[3]:.2f}), Bottom({pos[4]:.2f}), 相似度: {pos[6]:.2f}") + print(f"匹配内容: {pos[5][:50]}{'...' if len(pos[5]) > 50 else ''}") + print("-" * 50) + else: + print(f"页面: {pos[0]}, 边界框: Left({pos[1]:.2f}), Right({pos[2]:.2f}), Top({pos[3]:.2f}), Bottom({pos[4]:.2f})") else: print("未找到文本")