diff --git a/src/add_chunk_cli_pdf_img.py b/src/add_chunk_cli_pdf_img.py index 0b5174f..c73de95 100644 --- a/src/add_chunk_cli_pdf_img.py +++ b/src/add_chunk_cli_pdf_img.py @@ -10,6 +10,8 @@ from elasticsearch import Elasticsearch from minio import Minio from minio.error import S3Error +from get_pos_pdf import smart_fuzzy_find_text_batch, find_text_positions_batch + from dotenv import load_dotenv # 新增 # 加载 .env 文件中的环境变量 @@ -45,14 +47,15 @@ MINIO_CONFIG = { "secure": False } -def update_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, new_img_id): +def update_positon_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, position, new_img_id): """ - 在 Elasticsearch 中更新指定文档块的 img_id。 + 在 Elasticsearch 中更新指定文档块的position and img_id。 :param tenant_id: 租户 ID :param doc_id: 文档 ID :param chunk_id: 文档块 ID :param new_img_id: 新的 img_id + :param position: 位置信息 :return: 更新结果 """ try: @@ -81,12 +84,21 @@ def update_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, new_img_id): hit = result['hits']['hits'][0] doc_id_in_es = hit['_id'] - # 构建更新请求 - update_body = { - "doc": { - "img_id": new_img_id - } - } + # 构建更新请求 - 只更新存在的字段 + update_body = {"doc": {}} + + # 只有当 new_img_id 存在时才更新 img_id + if new_img_id is not None: + update_body["doc"]["img_id"] = new_img_id + + # 只有当 position 存在时才更新 positions + if position is not None: + update_body["doc"]["positions"] = position + + # 如果没有需要更新的字段,直接返回成功 + if not update_body["doc"]: + print("没有需要更新的字段") + return {"code": 0, "message": "No fields to update"} # 更新文档 update_result = es.update( @@ -100,19 +112,37 @@ def update_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, new_img_id): # 验证更新 verify_doc = es.get(index=index_name, id=doc_id_in_es) - if verify_doc['_source'].get('img_id') == new_img_id: - print(f"成功更新 img_id 为: {new_img_id}") + + # 检查 img_id 是否已更新(如果提供了 new_img_id) + img_id_updated = True + if new_img_id is not None: + img_id_updated = verify_doc['_source'].get('img_id') == new_img_id + if img_id_updated: + print(f"成功更新 img_id 为: {new_img_id}") + else: + print(f"更新验证失败,当前 img_id: {verify_doc['_source'].get('img_id')}") + + # 检查 position 是否已更新(如果提供了 position) + position_updated = True + if position is not None: + position_updated = verify_doc['_source'].get('positions') == position + if position_updated: + print(f"成功更新 position 为: {position}") + else: + print(f"更新验证失败,当前 position: {verify_doc['_source'].get('positions')}") + + # 统一返回结果 + if img_id_updated and position_updated: return {"code": 0, "message": ""} else: - print(f"更新验证失败,当前 img_id: {verify_doc['_source'].get('img_id')}") - return {"code": 100, "message": "Failed to verify img_id update"} + return {"code": 100, "message": "Failed to verify update"} + except Exception as e: print(f"更新 Elasticsearch 时发生错误: {str(e)}") return {"code": 101, "message": f"Error updating img_id: {str(e)}"} - def get_minio_client(): """创建MinIO客户端""" return Minio( @@ -295,7 +325,10 @@ def process_txt_chunks(dataset_id, document, txt_path): try: with open(txt_path, 'r', encoding='utf-8') as file: file_content = file.read() - img_chunk_ids = [] + + # 使用字典列表替代三个独立的列表 + chunks_info = [] + for num, txt_chunk in enumerate(file_content.split('\n\n')): if txt_chunk.strip(): print(f"处理文本块: {txt_chunk[:30]}...") @@ -307,6 +340,16 @@ def process_txt_chunks(dataset_id, document, txt_path): clean_chunk = remove_images_from_content(txt_chunk) chunk = document.add_chunk(content=clean_chunk) + # 初始化chunk信息 + chunk_info = { + 'id': chunk.id, + 'text': chunk.content, + 'has_image': False, # 默认为False + 'img_url': img_url + } + + upload_success = False + # 判断是否为网络图片 (新增逻辑) if img_url.startswith(('http://', 'https://')): # 下载网络图片到临时文件 @@ -321,10 +364,10 @@ def process_txt_chunks(dataset_id, document, txt_path): # 上传临时文件 if upload_file2minio(dataset_id, chunk.id, tmp_path): - img_chunk_ids.append(chunk.id) - # new_img_id = f"{dataset_id}-{chunk.id}" - # print(f"网络图片 {img_url} 已下载并上传,新的 img_id: {new_img_id}") - # update_img_id_in_elasticsearch(elastic_tenant_id, document.id, chunk.id, new_img_id) + upload_success = True + new_img_id = f"{dataset_id}-{chunk.id}" + print(f"网络图片 {img_url} 已下载并上传,新的 img_id: {new_img_id}") + # update_positon_img_id_in_elasticsearch(elastic_tenant_id, document.id, chunk.id, [], new_img_id) # 删除临时文件 os.unlink(tmp_path) @@ -340,23 +383,84 @@ def process_txt_chunks(dataset_id, document, txt_path): print(f"图片绝对路径: {img_abs_path}") if os.path.exists(img_abs_path): if upload_file2minio(dataset_id, chunk.id, img_abs_path): - img_chunk_ids.append(chunk.id) - # new_img_id = f"{dataset_id}-{chunk.id}" - # print(f"图片 {img_abs_path} 已上传,新的 img_id: {new_img_id}") - # update_img_id_in_elasticsearch(elastic_tenant_id, document.id, chunk.id, new_img_id) + upload_success = True + new_img_id = f"{dataset_id}-{chunk.id}" + print(f"图片 {img_abs_path} 已上传,新的 img_id: {new_img_id}") + #update_positon_img_id_in_elasticsearch(elastic_tenant_id, document.id, chunk.id, [], new_img_id) else: print(f"图片未找到: {img_abs_path},跳过。") + + # 只有上传成功后才设置has_image为True + if upload_success: + chunk_info['has_image'] = True + + chunks_info.append(chunk_info) else: print("未检测到图片链接,直接添加文本块。") chunk = document.add_chunk(content=txt_chunk) + # 为无图片的chunk添加信息 + chunk_info = { + 'id': chunk.id, + 'text': chunk.content, + 'has_image': False, + 'img_url': None + } + chunks_info.append(chunk_info) + print(f"第{num+1} Chunk添加成功! ID: {chunk.id}") - for img_chunk_id in img_chunk_ids: - update_img_id_in_elasticsearch(elastic_tenant_id, document.id, img_chunk_id, f"{dataset_id}-{img_chunk_id}") + + return chunks_info # 返回chunks_info except Exception as e: print(f"处理文本文件时出错: {txt_path},错误: {e}") + return [] # 出错时返回空列表 +def get_positions_from_chunk(pdf_path, chunks_info): + """ + 从PDF中获取文本块的位置信息 + + :param pdf_path: PDF文件路径 + :param chunks_info: 文本块信息列表,每个元素包含'id'和'text'键 + :return: 包含位置信息的列表 + """ + try: + # 提取所有chunk的文本内容用于批量查找 + chunk_texts = [chunk_info['text'] for chunk_info in chunks_info] + + # 使用智能模糊查找获取位置信息 + batch_positions = smart_fuzzy_find_text_batch(pdf_path, chunk_texts, similarity_threshold=0.7) + + # 将位置信息与chunks_info关联,并确保数据类型正确 + for i, chunk_info in enumerate(chunks_info): + positions = batch_positions[i] if i < len(batch_positions) else [] + + # 处理位置信息 + processed_positions = [] + for pos in positions: + if isinstance(pos, dict): + # 创建新的位置字典,确保所有坐标都是整数 + processed_pos = { + 'x0': int(round(float(pos['x0']))) if pos.get('x0') is not None else 0, + 'y0': int(round(float(pos['y0']))) if pos.get('y0') is not None else 0, + 'x1': int(round(float(pos['x1']))) if pos.get('x1') is not None else 0, + 'y1': int(round(float(pos['y1']))) if pos.get('y1') is not None else 0, + 'page': int(pos['page']) if pos.get('page') is not None else 0 + } + processed_positions.append(processed_pos) + + # 更新chunk_info中的positions + chunk_info['positions'] = processed_positions + + return chunks_info + + except Exception as e: + print(f"获取PDF文本位置信息时出错: {str(e)}") + # 出错时为每个chunk添加空的位置信息 + for chunk_info in chunks_info: + chunk_info['positions'] = [] + return chunks_info + @@ -371,7 +475,19 @@ def process_pdf_txt_pairs(pdf_dict, txt_dict, dataset): txt_path = txt_dict.get(name) if txt_path: - process_txt_chunks(dataset.id,document, txt_path) + chunks_info=process_txt_chunks(dataset.id,document, txt_path) + if chunks_info: + chunks_info=get_positions_from_chunk(pdf_path, chunks_info) + for chunk_info in chunks_info: + print(f"Chunk ID: {chunk_info['id']}, Text: {chunk_info['text'][:30]}..., Has Image: {chunk_info['has_image']}, Positions: {chunk_info['positions']}") + if chunk_info['has_image']: + # 如果有图片,更新Elasticsearch中的img_id + update_positon_img_id_in_elasticsearch(elastic_tenant_id, document.id, chunk_info['id'], chunk_info['positions'], f"{dataset.id}-{chunk_info['id']}") + else: + # 如果没有图片,仍然更新位置信息 + update_positon_img_id_in_elasticsearch(elastic_tenant_id, document.id, chunk_info['id'], chunk_info['positions'], None) + + def main(): diff --git a/src/get_pos_pdf.py b/src/get_pos_pdf.py index 3c44bd7..1b8c4a5 100644 --- a/src/get_pos_pdf.py +++ b/src/get_pos_pdf.py @@ -58,6 +58,151 @@ def find_fuzzy_text_positions_batch(pdf_path, target_texts, similarity_threshold """ 在PDF中批量模糊查找指定文本并返回坐标 + Args: + pdf_path (str): PDF文件路径 + target_texts (list): 要查找的文本列表 + similarity_threshold (float): 相似度阈值 (0-1),默认0.8 + + Returns: + list: 每个元素是一个列表,包含匹配文本坐标信息 + """ + if not os.path.exists(pdf_path): + raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") + + # 初始化结果列表 + batch_results = [[] for _ in target_texts] + + # 打开本地PDF文件 + with open(pdf_path, 'rb') as fp: + parser = PDFParser(fp) + doc = PDFDocument(parser) + + rsrcmgr = PDFResourceManager() + laparams = LAParams() + device = PDFPageAggregator(rsrcmgr, laparams=laparams) + interpreter = PDFPageInterpreter(rsrcmgr, device) + + # 处理每一页 + pages_chars = [] + for page_num, page in enumerate(PDFPage.create_pages(doc), 1): + interpreter.process_page(page) + layout = device.get_result() + char_list = parse_char_layout(layout) + pages_chars.append((page_num, char_list)) + + # 预处理所有页面的文本 + pages_cleaned_text = [] + for page_num, char_list in pages_chars: + page_text = ''.join([char_info['char'] for char_info in char_list]) + cleaned_page_text = clean_text_for_fuzzy_match(page_text) + pages_cleaned_text.append((page_num, cleaned_page_text, char_list)) + + # 为每个目标文本进行查找 + for idx, target_text in enumerate(target_texts): + # 清理目标文本 + cleaned_target = clean_text_for_fuzzy_match(target_text) + target_len = len(cleaned_target) + + if target_len == 0: + continue + + found_positions = [] + + # 在每一页中查找 + for page_num, cleaned_page_text, char_list in pages_cleaned_text: + # 滑动窗口查找相似文本 + matches = [] + for i in range(len(cleaned_page_text) - target_len + 1): + window_text = cleaned_page_text[i:i + target_len] + similarity = SequenceMatcher(None, cleaned_target, window_text).ratio() + + if similarity >= similarity_threshold: + # 找到匹配项,记录位置和相似度 + if i < len(char_list): + matches.append({ + 'start_idx': i, + 'end_idx': min(i + target_len - 1, len(char_list) - 1), + 'similarity': similarity + }) + + # 合并相邻的匹配块 + if matches: + # 按起始位置排序 + matches.sort(key=lambda x: x['start_idx']) + + # 合并相邻或重叠的匹配块 + merged_matches = [] + current_match = matches[0].copy() # 创建副本 + + for i in range(1, len(matches)): + next_match = matches[i] + # 如果下一个匹配块与当前块相邻或重叠,则合并 + # 判断条件:下一个块的起始位置 <= 当前块的结束位置 + 一些缓冲距离 + if next_match['start_idx'] <= current_match['end_idx'] + min(target_len, 10): + # 合并索引范围 + current_match['start_idx'] = min(current_match['start_idx'], next_match['start_idx']) + current_match['end_idx'] = max(current_match['end_idx'], next_match['end_idx']) + # 计算加权平均相似度 + total_length = (current_match['end_idx'] - current_match['start_idx'] + 1) + \ + (next_match['end_idx'] - next_match['start_idx'] + 1) + current_match['similarity'] = ( + current_match['similarity'] * (current_match['end_idx'] - current_match['start_idx'] + 1) + + next_match['similarity'] * (next_match['end_idx'] - next_match['start_idx'] + 1) + ) / total_length + else: + # 不相邻,保存当前块,开始新的块 + merged_matches.append(current_match) + current_match = next_match.copy() # 创建副本 + + # 添加最后一个块 + merged_matches.append(current_match) + + # 为每个合并后的块生成坐标信息 + for match in merged_matches: + start_idx = match['start_idx'] + end_idx = match['end_idx'] + + if start_idx < len(char_list) and end_idx < len(char_list): + # 获取匹配区域的所有字符 + matched_chars = char_list[start_idx:end_idx+1] + + # 过滤掉坐标为0的字符(通常是特殊字符) + valid_chars = [char for char in matched_chars + if char['x'] > 0 and char['y'] > 0] + + # 如果没有有效字符,则使用所有字符 + chars_to_use = valid_chars if valid_chars else matched_chars + + # 计算边界框 (left, right, top, bottom) + if chars_to_use: + # 计算边界值 + left = min([char['x'] for char in chars_to_use]) + right = max([char['x'] for char in chars_to_use]) + bottom = min([char['y'] for char in chars_to_use]) + top = max([char['y'] for char in chars_to_use]) + + # 获取匹配的文本内容 + matched_text = ''.join([char_info['char'] for char_info in chars_to_use]) + + # 只有当边界框有效时才添加结果 + if left >= 0 and right > left and top > bottom: + position = [ + page_num, + left, # left + right, # right + top, # top + bottom, # bottom + matched_text, # 添加匹配的内容 + match['similarity'] # 添加相似度信息 + ] + found_positions.append(position) + + batch_results[idx] = found_positions + + return batch_results + """ + 在PDF中批量模糊查找指定文本并返回坐标 + Args: pdf_path (str): PDF文件路径 target_texts (list): 要查找的文本列表 @@ -90,6 +235,13 @@ def find_fuzzy_text_positions_batch(pdf_path, target_texts, similarity_threshold char_list = parse_char_layout(layout) pages_chars.append((page_num, char_list)) + # 预处理所有页面的文本 + pages_cleaned_text = [] + for page_num, char_list in pages_chars: + page_text = ''.join([char_info['char'] for char_info in char_list]) + cleaned_page_text = clean_text_for_fuzzy_match(page_text) + pages_cleaned_text.append((page_num, cleaned_page_text, char_list)) + # 为每个目标文本进行查找 for target_text in target_texts: # 清理目标文本 @@ -102,11 +254,7 @@ def find_fuzzy_text_positions_batch(pdf_path, target_texts, similarity_threshold found_positions = [] # 在每一页中查找 - for page_num, char_list in pages_chars: - # 将页面字符组合成文本 - page_text = ''.join([char_info['char'] for char_info in char_list]) - cleaned_page_text = clean_text_for_fuzzy_match(page_text) - + for page_num, cleaned_page_text, char_list in pages_cleaned_text: # 滑动窗口查找相似文本 matches = [] for i in range(len(cleaned_page_text) - target_len + 1): @@ -197,7 +345,6 @@ def find_fuzzy_text_positions_batch(pdf_path, target_texts, similarity_threshold batch_results[target_text] = found_positions return batch_results - def find_text_positions_batch(pdf_path, target_texts): """ 在PDF中批量查找指定文本并返回坐标 @@ -207,13 +354,13 @@ def find_text_positions_batch(pdf_path, target_texts): target_texts (list): 要查找的文本列表 Returns: - dict: 以target_text为键,包含匹配文本坐标信息列表为值的字典 + list: 每个元素是一个列表,包含匹配文本坐标信息 """ if not os.path.exists(pdf_path): raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") - # 初始化结果字典 - batch_results = {text: [] for text in target_texts} + # 初始化结果列表 + batch_results = [[] for _ in target_texts] # 打开本地PDF文件 with open(pdf_path, 'rb') as fp: @@ -241,7 +388,7 @@ def find_text_positions_batch(pdf_path, target_texts): normalized_full_text = normalize_text(full_text) # 为每个目标文本查找位置 - for target_text in target_texts: + for idx, target_text in enumerate(target_texts): # 标准化目标文本 normalized_target = normalize_text(target_text) @@ -284,7 +431,7 @@ def find_text_positions_batch(pdf_path, target_texts): start = pos + 1 - batch_results[target_text] = found_positions + batch_results[idx] = found_positions return batch_results @@ -297,13 +444,13 @@ def find_text_in_pdf_per_page_batch(pdf_path, target_texts): target_texts (list): 要查找的文本列表 Returns: - dict: 以target_text为键,包含匹配文本坐标信息列表为值的字典 + list: 每个元素是一个列表,包含匹配文本坐标信息 """ if not os.path.exists(pdf_path): raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") - # 初始化结果字典 - batch_results = {text: [] for text in target_texts} + # 初始化结果列表 + batch_results = [[] for _ in target_texts] # 打开本地PDF文件 with open(pdf_path, 'rb') as fp: @@ -325,10 +472,11 @@ def find_text_in_pdf_per_page_batch(pdf_path, target_texts): page_text = ''.join([char_info['char'] for char_info in char_list]) normalized_page_text = normalize_text(page_text) + # 预处理所有目标文本 + normalized_targets = [normalize_text(text) for text in target_texts] + # 为每个目标文本在当前页查找 - for target_text in target_texts: - normalized_target = normalize_text(target_text) - + for idx, normalized_target in enumerate(normalized_targets): # 在页面文本中查找目标文本 pos = normalized_page_text.find(normalized_target) if pos != -1: @@ -349,13 +497,13 @@ def find_text_in_pdf_per_page_batch(pdf_path, target_texts): top = max(start_char['y'], end_char['y']) position = [ - page_num, - left, # left - right, # right - top, # top - bottom, # bottom + int(page_num), + int(left), # left + int(right), # right + int(top), # top + int(bottom), # bottom ] - batch_results[target_text].append(position) + batch_results[idx].append(position) return batch_results @@ -369,13 +517,13 @@ def find_partial_text_positions_batch(pdf_path, target_texts, min_match_ratio=0. min_match_ratio (float): 最小匹配比例 (0-1) Returns: - dict: 以target_text为键,包含匹配文本坐标信息列表为值的字典 + list: 每个元素是一个列表,包含匹配文本坐标信息 """ if not os.path.exists(pdf_path): raise FileNotFoundError(f"PDF文件不存在: {pdf_path}") - # 初始化结果字典 - batch_results = {text: [] for text in target_texts} + # 初始化结果列表 + batch_results = [[] for _ in target_texts] # 打开本地PDF文件 with open(pdf_path, 'rb') as fp: @@ -397,9 +545,10 @@ def find_partial_text_positions_batch(pdf_path, target_texts, min_match_ratio=0. page_text = ''.join([char_info['char'] for char_info in char_list]) normalized_page_text = normalize_text(page_text) - # 为每个目标文本计算匹配 + # 预处理所有目标文本 + normalized_targets = [] + keywords_list = [] for target_text in target_texts: - # 将目标文本分割成关键词或短语 normalized_target = normalize_text(target_text) # 提取关键词(移除常见停用词后的词) keywords = [word for word in normalized_target.split() if len(word) > 2] @@ -407,6 +556,11 @@ def find_partial_text_positions_batch(pdf_path, target_texts, min_match_ratio=0. if not keywords: keywords = normalized_target.split() # 如果没有长词,则使用所有词 + normalized_targets.append(normalized_target) + keywords_list.append(keywords if keywords else []) + + # 为每个目标文本计算匹配 + for idx, (normalized_target, keywords) in enumerate(zip(normalized_targets, keywords_list)): if not keywords: continue @@ -440,7 +594,7 @@ def find_partial_text_positions_batch(pdf_path, target_texts, min_match_ratio=0. top, # top bottom, # bottom ] - batch_results[target_text].append(position) + batch_results[idx].append(position) return batch_results @@ -454,62 +608,71 @@ def smart_fuzzy_find_text_batch(pdf_path, target_texts, similarity_threshold=0.8 similarity_threshold (float): 相似度阈值 Returns: - dict: 以target_text为键,包含匹配文本坐标信息列表为值的字典 + list: 每个元素是一个列表,包含匹配文本坐标信息 """ - # 初始化结果字典 - batch_results = {text: [] for text in target_texts} + # 初始化结果列表 + batch_results = [[] for _ in target_texts] # 方法1: 精确匹配 exact_results = find_text_in_pdf_per_page_batch(pdf_path, target_texts) # 对于已经找到精确匹配的文本,直接使用结果 - remaining_texts = [] - for text in target_texts: - if exact_results.get(text): - batch_results[text] = exact_results[text] + remaining_indices = [] + for idx, results in enumerate(exact_results): + if results: + batch_results[idx] = results else: - remaining_texts.append(text) + remaining_indices.append(idx) - if not remaining_texts: + if not remaining_indices: return batch_results + # 构建剩余文本列表 + remaining_texts = [target_texts[idx] for idx in remaining_indices] + # 方法2: 模糊匹配(仅对未找到精确匹配的文本) fuzzy_results = find_fuzzy_text_positions_batch(pdf_path, remaining_texts, similarity_threshold) # 更新结果 - for text in remaining_texts: - if fuzzy_results.get(text): - batch_results[text] = fuzzy_results[text] - remaining_texts = [t for t in remaining_texts if t != text] # 从剩余文本中移除 + for i, idx in enumerate(remaining_indices): + if fuzzy_results[i]: + batch_results[idx] = fuzzy_results[i] + remaining_indices = [ri for ri in remaining_indices if ri != idx] # 从剩余索引中移除 - if not remaining_texts: + if not remaining_indices: return batch_results + # 构建剩余文本列表 + remaining_texts = [target_texts[idx] for idx in remaining_indices] + # 方法3: 部分匹配(关键词匹配,仅对仍未找到匹配的文本) partial_results = find_partial_text_positions_batch(pdf_path, remaining_texts, 0.5) # 更新最终结果 - for text in remaining_texts: - if partial_results.get(text): - batch_results[text] = partial_results[text] + for i, idx in enumerate(remaining_indices): + if partial_results[i]: + batch_results[idx] = partial_results[i] return batch_results - if __name__ == '__main__': # 使用本地PDF文件 - pdf_file_path = 'F:\\gitea\\ragflow_api_test\\ai协作方式.pdf' # 修改为你的PDF文件路径 + pdf_file_path = 'F:\\2\\2024深化智慧城市发展推进城市全域数字化转型的指导意见.pdf' # 修改为你的PDF文件路径 target_texts = [ - '''创建 `plan` 文件: 固化和锁定最终的"怎么做" -• 基于 `plan` 执行: 精准驱动 AI 完成任务''', - "其他要查找的文本1", - "其他要查找的文本2" + '''一、总体要求 +以习近平新时代中国特色社会主义思想为指导,完整、准确、全面贯彻新发展理念,统筹发展和安全,充分发挥数据的基础资源和创新引擎作用,整体性重塑智慧城市技术架构、系统性变革城市管理流程、一体化推动产城深度融合,全面提升城市全域数字化转型的整体性、系统性、协同性,不断满足人民日益增长的美好生活需要,为全面建设社会主义现代化国家提供强大动力。到2027年,全国城市全域数字化转型取得明显成效,形成一批横向打通、纵向贯通、各具特色的宜居、韧性、智慧城市,有力支撑数字中国建设。到2030年,全国城市全域数字化转型全面突破,人民群众的获得感、幸福感、安全感全面提升,涌现一批数字文明时代具有全球竞争力的中国式现代化城市。''', + '''二、全领域推进城市数字化转型 +(一)建立城市数字化共性基础。构建统一规划、统一架构、统一标准、统一运维的城市运行和治理智能中枢,打造线上线下联动、服务管理协同的城市共性支撑平台,构建开放兼容、共性赋能、安全可靠的综合性基础环境,推进算法、模型等数字资源一体集成部署,探索建立共性组件、模块等共享协作机制。鼓励发展基于人工智能等技术的智能分析、智能调度、智能监管、辅助决策,全面支撑赋能城市数字化转型场景建设与发展。鼓励有条件的地方推进城市信息模型、时空大数据、国土空间基础信息、实景三维中国等基础平台功能整合、协同发展、应用赋能,为城市数字化转型提供统一的时空框架,因地制宜有序探索推进数字孪生城市建设,推动虚实共生、仿真推演、迭代优化的数字孪生场景落地。 +(二)培育壮大城市数字经济。深入推进数字技术与一二三产业深度融合,鼓励平台企业构建多层次产业互联网服务平台。因地制宜发展智慧农业,加快工业互联网规模化应用,推动金融、物流等生产性服务业和商贸、文旅、康养等生活性服务业数字化转型,提升“上云用数赋智”水平。深化数字化转型促进中心建设,促进城市数字化转型和大中小企业融合创新协同发展。因地制宜发展新兴数字产业,加强大数据、人工智能、区块链、先进计算、未来网络、卫星遥感、三维建模等关键数字技术在城市场景中集成应用,加快技术创新成果转化,打造具有国际竞争力的数字产业集群。培育壮大数据产业,发展一批数据商和第三方专业服务机构,提高数据要素应用支撑与服务能力。''', + """(三)促进新型产城融合发展。创新生产空间和生活空间融合的数字化场景,加强城市空间开发利用大数据分析,推进数字化赋能郊区新城,实现城市多中心、网络化、组团式发展。推动城市“数字更新”,加快街区、商圈等城市微单元基础设施智能化升级,探索利用数字技术创新应用场景,激发产城融合服务能级与数字活力。深化城市场景开放促进以城带产,提升产业聚合力。加速创新资源共享助力以产促城,发展虚拟园区和跨区域协同创新平台,增强城市数字经济就业吸附力。""" ] try: print("批量智能模糊查找:") batch_positions = smart_fuzzy_find_text_batch(pdf_file_path, target_texts, similarity_threshold=0.7) - for target_text, positions in batch_positions.items(): + # 现在 batch_positions 是一个列表,需要使用 enumerate 来同时获取索引和位置信息 + for idx, positions in enumerate(batch_positions): + target_text = target_texts[idx] print(f"\n查找文本: {target_text[:50]}{'...' if len(target_text) > 50 else ''}") if positions: print(f"找到文本在以下位置:") diff --git a/src/get_pos_pdf_.py b/src/get_pos_pdf_.py new file mode 100644 index 0000000..eb510f8 --- /dev/null +++ b/src/get_pos_pdf_.py @@ -0,0 +1,53 @@ +import fitz # PyMuPDF +import difflib + +def find_text_in_pdf_detailed(pdf_path, query_text, threshold=0.8): + """ + 在PDF中详细查找文本,按块和行查找。 + """ + results = [] + doc = fitz.open(pdf_path) + + # 清理查询文本 + cleaned_query = ' '.join(query_text.split()) + print(f"查找文本: {cleaned_query[:100]}...") + + for page_num in range(len(doc)): + page = doc.load_page(page_num) + blocks = page.get_text("dict")["blocks"] + + for block in blocks: + if "lines" not in block: + continue + + # 组合整个块的文本 + block_text = "" + for line in block["lines"]: + for span in line["spans"]: + block_text += span["text"] + + if block_text.strip(): + similarity = difflib.SequenceMatcher(None, cleaned_query.strip(), block_text.strip()).ratio() + if similarity >= threshold: + # 使用块的边界框 + bbox = block["bbox"] if "bbox" in block else None + if bbox: + results.append((page_num + 1, bbox)) + print(f"第 {page_num + 1} 页块匹配,相似度: {similarity:.2f}") + elif similarity >= 0.1: # 调试输出 + print(f"第 {page_num + 1} 页块相似度: {similarity:.2f}") + + doc.close() + return results + +# 示例用法 +if __name__ == "__main__": + pdf_path = 'F:\\2\\2024深化智慧城市发展推进城市全域数字化转型的指导意见.pdf' + query = '''一、总体要求 +以习近平新时代中国特色社会主义思想为指导,完''' + + print("开始详细查找...") + matches = find_text_in_pdf_detailed(pdf_path, query, threshold=0.3) + print(f"找到 {len(matches)} 个匹配项") + for page, bbox in matches: + print(f"在第 {page} 页找到匹配,位置:{bbox}") \ No newline at end of file