新增PDF和TXT文件处理功能,包括文件选择、对齐、上传和文本块处理
This commit is contained in:
184
src/add_chunk_cli_pdf_img.py
Normal file
184
src/add_chunk_cli_pdf_img.py
Normal file
@@ -0,0 +1,184 @@
|
||||
from ragflow_sdk import RAGFlow
|
||||
import os
|
||||
import re
|
||||
## home
|
||||
api_key = "ragflow-MyMjM2ODE2NThlMTExZjBiMzJlNzY5Mj"
|
||||
base_url = "http://127.0.0.1:8099"
|
||||
|
||||
|
||||
## 公司内网
|
||||
base_url = "http://192.168.107.165:8099"
|
||||
api_key = "ragflow-I5ZDNjMWNhNTdlMjExZjBiOTEwMzI0ZT"
|
||||
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def choose_from_list(options, prompt):
|
||||
for idx, item in enumerate(options):
|
||||
print(f"{idx + 1}. {item}")
|
||||
while True:
|
||||
choice = input(prompt)
|
||||
if choice.isdigit() and 1 <= int(choice) <= len(options):
|
||||
return options[int(choice) - 1]
|
||||
else:
|
||||
print("输入无效,请重新输入编号。")
|
||||
|
||||
|
||||
def select_files(file_path, file_type="pdf"):
|
||||
"""
|
||||
选择file_path中的所有指定类型文件(默认pdf),
|
||||
返回文件路径列表
|
||||
"""
|
||||
file_list = []
|
||||
for root, dirs, files in os.walk(file_path):
|
||||
for file in files:
|
||||
if file.lower().endswith(f".{file_type.lower()}"):
|
||||
file_list.append(os.path.join(root, file))
|
||||
return file_list
|
||||
|
||||
|
||||
def pair_pdf_and_txt(pdf_path, txt_path):
|
||||
"""
|
||||
将pdf和txt文件对齐,
|
||||
返回对齐pdf_dict和txt_dict,
|
||||
pdf_dict和txt_dict的key为文件名(不含后缀),value为文件路径
|
||||
txt_dict仅收入与pdf_dict中存在的文件,
|
||||
如果pdf_dict中有文件名没有对应的txt文件,则不收入txt_dict
|
||||
"""
|
||||
pdf_files = select_files(pdf_path, "pdf")
|
||||
txt_files = select_files(txt_path, "txt")
|
||||
|
||||
# 构建文件名到路径的映射
|
||||
pdf_dict = {os.path.splitext(os.path.basename(f))[0]: f for f in pdf_files}
|
||||
txt_dict_all = {os.path.splitext(os.path.basename(f))[0]: f for f in txt_files}
|
||||
|
||||
# 只保留有对应txt的pdf
|
||||
pdf_dict_aligned = {}
|
||||
txt_dict_aligned = {}
|
||||
for name in pdf_dict:
|
||||
if name in txt_dict_all:
|
||||
pdf_dict_aligned[name] = pdf_dict[name]
|
||||
txt_dict_aligned[name] = txt_dict_all[name]
|
||||
|
||||
return pdf_dict_aligned, txt_dict_aligned
|
||||
|
||||
|
||||
def select_dataset(rag_object):
|
||||
"""选择可用数据集"""
|
||||
datasets = rag_object.list_datasets()
|
||||
if not datasets:
|
||||
print("没有可用的数据集。")
|
||||
return None
|
||||
|
||||
dataset_names = [ds.name for ds in datasets]
|
||||
dataset_name = choose_from_list(dataset_names, "请选择数据集编号:")
|
||||
return [ds for ds in datasets if ds.name == dataset_name][0]
|
||||
|
||||
def upload_or_get_document(dataset, pdf_path, display_name):
|
||||
"""上传或获取已存在的文档"""
|
||||
try:
|
||||
document = dataset.list_documents(name=display_name)[0]
|
||||
print(f"文档已存在: {display_name},跳过上传。")
|
||||
return document
|
||||
except Exception:
|
||||
try:
|
||||
with open(pdf_path, "rb") as f:
|
||||
blob = f.read()
|
||||
dataset.upload_documents([{"display_name": display_name, "blob": blob}])
|
||||
return dataset.list_documents(name=display_name)[0]
|
||||
except Exception as e:
|
||||
print(f"上传PDF失败: {pdf_path},错误: {e}")
|
||||
return None
|
||||
|
||||
|
||||
|
||||
|
||||
def divid_txt_chunk_img(txt_chunk):
|
||||
"""分离文本块中的图片链接和纯文本内容
|
||||
|
||||
输入格式示例:
|
||||
"这是文本内容更多文本"
|
||||
|
||||
返回:
|
||||
clean_text: 移除所有图片链接后的纯文本内容
|
||||
image_paths: 提取到的图片路径列表
|
||||
"""
|
||||
# 正则表达式匹配Markdown图片格式: 
|
||||
pattern = r'!\[.*?\]\((.*?)\)'
|
||||
|
||||
# 提取所有图片路径
|
||||
image_paths = re.findall(pattern, txt_chunk)
|
||||
|
||||
# 移除所有图片标记
|
||||
clean_text = re.sub(pattern, '', txt_chunk)
|
||||
|
||||
# 移除多余空行并清理首尾空白
|
||||
clean_text = re.sub(r'\n\s*\n', '\n\n', clean_text).strip()
|
||||
|
||||
return clean_text, image_paths
|
||||
|
||||
def upload_images_to_minio(image_paths, document):
|
||||
"""
|
||||
上传图片到MinIO,
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
def process_txt_chunks(document, txt_path):
|
||||
"""处理文本分块并添加到文档"""
|
||||
try:
|
||||
with open(txt_path, 'r', encoding='utf-8') as file:
|
||||
file_content = file.read()
|
||||
|
||||
for num, txt_chunk in enumerate(file_content.split('\n\n')):
|
||||
if txt_chunk.strip():
|
||||
print(f"处理文本块: {txt_chunk[:30]}...")
|
||||
chunk = document.add_chunk(content=txt_chunk)
|
||||
print(f"第{num+1} Chunk添加成功! ID: {chunk.id}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"处理文本文件时出错: {txt_path},错误: {e}")
|
||||
|
||||
def process_pdf_txt_pairs(pdf_dict, txt_dict, dataset):
|
||||
"""处理PDF-TXT文件对"""
|
||||
for name, pdf_path in pdf_dict.items():
|
||||
display_name = os.path.basename(pdf_path)
|
||||
document = upload_or_get_document(dataset, pdf_path, display_name)
|
||||
if not document:
|
||||
continue
|
||||
|
||||
txt_path = txt_dict.get(name)
|
||||
if txt_path:
|
||||
process_txt_chunks(document, txt_path)
|
||||
|
||||
def main():
|
||||
file_path = "g:\\11\\22\\规范\\"
|
||||
pdf_dict, txt_dict = pair_pdf_and_txt(file_path, file_path)
|
||||
|
||||
if not pdf_dict:
|
||||
print("未选择任何文件。")
|
||||
return
|
||||
|
||||
dataset = select_dataset(rag_object)
|
||||
if not dataset:
|
||||
print("未选择数据集。")
|
||||
return
|
||||
|
||||
process_pdf_txt_pairs(pdf_dict, txt_dict, dataset)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user