优化 Elasticsearch 更新逻辑,支持批量位置更新,调整匹配结果处理,新增位置整数格式返回
This commit is contained in:
@@ -9,6 +9,8 @@ import tempfile
|
||||
from elasticsearch import Elasticsearch
|
||||
from minio import Minio
|
||||
from minio.error import S3Error
|
||||
from find_text_in_pdf_enhanced import find_text_in_pdf
|
||||
import time
|
||||
|
||||
# from get_pos_pdf import smart_fuzzy_find_text_batch, find_text_positions_batch
|
||||
|
||||
@@ -47,7 +49,7 @@ MINIO_CONFIG = {
|
||||
"secure": False
|
||||
}
|
||||
|
||||
def update_positon_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, position, new_img_id):
|
||||
def update_positon_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, positions, new_img_id):
|
||||
"""
|
||||
在 Elasticsearch 中更新指定文档块的position and img_id。
|
||||
|
||||
@@ -93,24 +95,27 @@ def update_positon_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, position
|
||||
update_body["doc"]["img_id"] = new_img_id
|
||||
|
||||
# 只有当 position 存在时才更新 positions
|
||||
if position is not None:
|
||||
# 如果传入的是嵌套字典格式的 position
|
||||
if isinstance(position, list) and all(isinstance(p, dict) for p in position):
|
||||
# 将字典格式转换为整数列表格式
|
||||
formatted_positions = []
|
||||
for pos in position:
|
||||
pos_list = [
|
||||
pos.get('page', 0), # 页码
|
||||
int(round(float(pos.get('x0', 0)))), # x0
|
||||
int(round(float(pos.get('x1', 0)))), # x1
|
||||
int(round(float(pos.get('y0', 0)))), # y0
|
||||
int(round(float(pos.get('y1', 0)))) # y1
|
||||
]
|
||||
formatted_positions.append(pos_list)
|
||||
update_body["doc"]["positions"] = formatted_positions
|
||||
# 如果已经是整数列表格式
|
||||
elif isinstance(position, list):
|
||||
update_body["doc"]["positions"] = position
|
||||
if positions :
|
||||
|
||||
position_int = []
|
||||
|
||||
for pos in positions:
|
||||
if len(pos) != 5:
|
||||
continue # Skip invalid positions
|
||||
|
||||
pn, left, right, top, bottom = pos
|
||||
# 使用元组格式,与原始RAGFlow保持一致
|
||||
position_int.append((int(pn + 1), int(left), int(right), int(top), int(bottom)))
|
||||
if position_int:
|
||||
update_body["doc"]["position_int"] = position_int
|
||||
update_body["doc"]["page_num_int"] = [position_int[0][0]]
|
||||
update_body["doc"]["top_int"] = [position_int[0][3]]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# 如果没有需要更新的字段,直接返回成功
|
||||
if not update_body["doc"]:
|
||||
@@ -127,32 +132,32 @@ def update_positon_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, position
|
||||
|
||||
print(f"Elasticsearch 更新结果: index={index_name}, id={doc_id_in_es}, result={update_result}")
|
||||
|
||||
# 验证更新
|
||||
verify_doc = es.get(index=index_name, id=doc_id_in_es)
|
||||
# # 验证更新
|
||||
# verify_doc = es.get(index=index_name, id=doc_id_in_es)
|
||||
|
||||
# 检查 img_id 是否已更新(如果提供了 new_img_id)
|
||||
img_id_updated = True
|
||||
if new_img_id is not None:
|
||||
img_id_updated = verify_doc['_source'].get('img_id') == new_img_id
|
||||
if img_id_updated:
|
||||
print(f"成功更新 img_id 为: {new_img_id}")
|
||||
else:
|
||||
print(f"更新验证失败,当前 img_id: {verify_doc['_source'].get('img_id')}")
|
||||
# # 检查 img_id 是否已更新(如果提供了 new_img_id)
|
||||
# img_id_updated = True
|
||||
# if new_img_id is not None:
|
||||
# img_id_updated = verify_doc['_source'].get('img_id') == new_img_id
|
||||
# if img_id_updated:
|
||||
# print(f"成功更新 img_id 为: {new_img_id}")
|
||||
# else:
|
||||
# print(f"更新验证失败,当前 img_id: {verify_doc['_source'].get('img_id')}")
|
||||
|
||||
# 检查 position 是否已更新(如果提供了 position)
|
||||
position_updated = True
|
||||
if position is not None:
|
||||
position_updated = verify_doc['_source'].get('positions') == position
|
||||
if position_updated:
|
||||
print(f"成功更新 position 为: {position}")
|
||||
else:
|
||||
print(f"更新验证失败,当前 position: {verify_doc['_source'].get('positions')}")
|
||||
# # 检查 position 是否已更新(如果提供了 position)
|
||||
# position_updated = True
|
||||
# if position is not None:
|
||||
# position_updated = verify_doc['_source'].get('positions') == position
|
||||
# if position_updated:
|
||||
# print(f"成功更新 position 为: {position}")
|
||||
# else:
|
||||
# print(f"更新验证失败,当前 position: {verify_doc['_source'].get('positions')}")
|
||||
|
||||
# 统一返回结果
|
||||
if img_id_updated and position_updated:
|
||||
return {"code": 0, "message": ""}
|
||||
else:
|
||||
return {"code": 100, "message": "Failed to verify update"}
|
||||
# # 统一返回结果
|
||||
# if img_id_updated and position_updated:
|
||||
# return {"code": 0, "message": ""}
|
||||
# else:
|
||||
# return {"code": 100, "message": "Failed to verify update"}
|
||||
|
||||
|
||||
except Exception as e:
|
||||
@@ -160,6 +165,7 @@ def update_positon_img_id_in_elasticsearch(tenant_id, doc_id, chunk_id, position
|
||||
return {"code": 101, "message": f"Error updating img_id: {str(e)}"}
|
||||
|
||||
|
||||
|
||||
def get_minio_client():
|
||||
"""创建MinIO客户端"""
|
||||
return Minio(
|
||||
@@ -444,30 +450,43 @@ def get_positions_from_chunk(pdf_path, chunks_info):
|
||||
try:
|
||||
# 提取所有chunk的文本内容用于批量查找
|
||||
chunk_texts = [chunk_info['text'] for chunk_info in chunks_info]
|
||||
print(f"批量查找文本块: {chunk_texts}")
|
||||
|
||||
# 使用智能模糊查找获取位置信息
|
||||
batch_positions = smart_fuzzy_find_text_batch(pdf_path, chunk_texts, similarity_threshold=0.7)
|
||||
matches = find_text_in_pdf(
|
||||
pdf_path,
|
||||
chunk_texts,
|
||||
threshold=60
|
||||
)
|
||||
print(f"匹配结果: {matches}")
|
||||
|
||||
# 将位置信息与chunks_info关联,并确保数据类型正确
|
||||
for i, chunk_info in enumerate(chunks_info):
|
||||
positions = batch_positions[i] if i < len(batch_positions) else []
|
||||
# 确保 chunk_info 包含 'positions' 键
|
||||
if 'positions' not in chunk_info:
|
||||
chunk_info['positions'] = []
|
||||
|
||||
# 处理位置信息
|
||||
processed_positions = []
|
||||
for pos in positions:
|
||||
if isinstance(pos, dict):
|
||||
# 创建新的位置字典,确保所有坐标都是整数
|
||||
processed_pos = {
|
||||
'x0': int(round(float(pos['x0']))) if pos.get('x0') is not None else 0,
|
||||
'y0': int(round(float(pos['y0']))) if pos.get('y0') is not None else 0,
|
||||
'x1': int(round(float(pos['x1']))) if pos.get('x1') is not None else 0,
|
||||
'y1': int(round(float(pos['y1']))) if pos.get('y1') is not None else 0,
|
||||
'page': int(pos['page']) if pos.get('page') is not None else 0
|
||||
}
|
||||
processed_positions.append(processed_pos)
|
||||
print(f"处理第 {i+1} 个chunk: {chunk_info['text']}")
|
||||
print(f"更新前位置: {chunk_info['positions']}")
|
||||
|
||||
# 更新chunk_info中的positions
|
||||
chunk_info['positions'] = processed_positions
|
||||
if isinstance(matches, list) and i < len(matches):
|
||||
chunk_info['positions']=[mat['position_int'] for mat in matches[i] if 'position_int' in mat]
|
||||
|
||||
# # 如果matches是列表且索引有效
|
||||
# if isinstance(matches[i], dict) and 'position_int' in matches[i]:
|
||||
# chunk_info['positions'] = matches[i]['position_int']
|
||||
# print(f"更新后位置: {chunk_info['positions']}")
|
||||
# else:
|
||||
# chunk_info['positions'] = []
|
||||
# print(f"未找到有效位置信息,设置为空列表")
|
||||
else:
|
||||
chunk_info['positions'] = []
|
||||
print(f"匹配结果无效或索引越界,设置为空列表")
|
||||
|
||||
# 验证更新结果
|
||||
print("最终chunks_info状态:")
|
||||
for i, chunk_info in enumerate(chunks_info):
|
||||
print(f" Chunk {i+1}: ID={chunk_info['id']}, Positions={chunk_info['positions']}")
|
||||
|
||||
return chunks_info
|
||||
|
||||
@@ -475,12 +494,13 @@ def get_positions_from_chunk(pdf_path, chunks_info):
|
||||
print(f"获取PDF文本位置信息时出错: {str(e)}")
|
||||
# 出错时为每个chunk添加空的位置信息
|
||||
for chunk_info in chunks_info:
|
||||
# 确保 chunk_info 包含 'positions' 键
|
||||
if 'positions' not in chunk_info:
|
||||
chunk_info['positions'] = []
|
||||
return chunks_info
|
||||
|
||||
|
||||
|
||||
|
||||
def process_pdf_txt_pairs(pdf_dict, txt_dict, dataset):
|
||||
"""处理PDF-TXT文件对"""
|
||||
for name, pdf_path in pdf_dict.items():
|
||||
@@ -493,6 +513,8 @@ def process_pdf_txt_pairs(pdf_dict, txt_dict, dataset):
|
||||
txt_path = txt_dict.get(name)
|
||||
if txt_path:
|
||||
chunks_info=process_txt_chunks(dataset.id,document, txt_path)
|
||||
|
||||
time.sleep(1)
|
||||
if chunks_info:
|
||||
chunks_info=get_positions_from_chunk(pdf_path, chunks_info)
|
||||
for chunk_info in chunks_info:
|
||||
|
@@ -161,9 +161,10 @@ def find_text_in_pdf(pdf_path,
|
||||
if matched_lines:
|
||||
_, merged_bbox = _merge_lines(matched_lines)
|
||||
results.append({
|
||||
"page": p + 1,
|
||||
"page": p,
|
||||
"bbox": merged_bbox,
|
||||
"matched_text": matched_text
|
||||
"matched_text": matched_text,
|
||||
"position_int":[p, merged_bbox[0], merged_bbox[2], merged_bbox[1], merged_bbox[3]]
|
||||
})
|
||||
if results:
|
||||
batch_results[idx].extend(results)
|
||||
@@ -206,6 +207,7 @@ def highlight_matches(pdf_path, matches, output_path="highlighted.pdf"):
|
||||
if __name__ == "__main__":
|
||||
pdf_path = 'e:\\2\\2024深化智慧城市发展推进城市全域数字化转型的指导意见.pdf'
|
||||
pdf_path = 'G:\\SynologyDrive\\大模型\\RAG\\20250805党建\\中国共产党领导干部廉洁从业若干准则.pdf'
|
||||
pdf_path ="F:\\Synology_nas\\SynologyDrive\\大模型\\RAG\\20250805党建\\中国共产党领导干部廉洁从业若干准则.pdf"
|
||||
query = [
|
||||
'''一、总体要求
|
||||
以习近平新时代中国特色社会主义思想为指导,完整、准确、全面贯彻新发展理念,统筹发展和安全,充分发挥数据的基础资源和创新引擎作用,整体性重塑智慧城市技术架构、系统性变革城市管理流程、一体化推动产城深度融合,全面提升城市全域数字化转型的整体性、系统性、协同性,不断满足人民日益增长的美好生活需要,为全面建设社会主义现代化国家提供强大动力。到2027年,全国城市全域数字化转型取得明显成效,形成一批横向打通、纵向贯通、各具特色的宜居、韧性、智慧城市,有力支撑数字中国建设。到2030年,全国城市全域数字化转型全面突破,人民群众的获得感、幸福感、安全感全面提升,涌现一批数字文明时代具有全球竞争力的中国式现代化城市。''',
|
||||
@@ -271,7 +273,7 @@ if __name__ == "__main__":
|
||||
# 1. 找跨行正则匹配
|
||||
matches = find_text_in_pdf(
|
||||
pdf_path,
|
||||
query, # 你的正则
|
||||
query,
|
||||
threshold=60
|
||||
|
||||
)
|
||||
@@ -284,7 +286,7 @@ if __name__ == "__main__":
|
||||
|
||||
#highlight_matches(pdf_path, query_matches, "example_highlighted.pdf")
|
||||
for m in query_matches:
|
||||
print(f"第 {m['page']} 页 匹配: {m['matched_text'][:50]}... 位置: {m['bbox']}")
|
||||
print(f"第 {m['page']} 页 匹配: {m['matched_text'][:50]}... 位置: {m['bbox']}, 位置_int: {m['position_int']}")
|
||||
print("------------------")
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user