55 lines
1.7 KiB
Python
55 lines
1.7 KiB
Python
import json
|
||
import os
|
||
import argparse
|
||
import pandas as pd
|
||
import matplotlib.pyplot as plt
|
||
|
||
def get_Composition_ratio(input_file):
|
||
"""
|
||
计算数据集类别组成比例,并打印输出。
|
||
:param input_file: 输入的JSONL文件路径
|
||
"""
|
||
# 读取JSONL文件
|
||
with open(input_file, "r", encoding="utf-8") as f:
|
||
data = [json.loads(line) for line in f]
|
||
|
||
# 提取每条数据的类别标签(假设在 conversation[0]['assistant'])
|
||
labels = []
|
||
for item in data:
|
||
# 兼容 conversation 为列表且有 assistant 字段
|
||
if "conversation" in item and isinstance(item["conversation"], list):
|
||
conv = item["conversation"]
|
||
if len(conv) > 0 and "assistant" in conv[0]:
|
||
labels.append(conv[0]["assistant"])
|
||
else:
|
||
labels.append("未知")
|
||
else:
|
||
labels.append("未知")
|
||
|
||
df = pd.DataFrame({"label": labels})
|
||
|
||
# 计算每个类别的数量
|
||
counts = df['label'].value_counts()
|
||
total = counts.sum()
|
||
|
||
# 计算每个类别的比例
|
||
ratios = counts / total * 100
|
||
|
||
# 打印每个类别的比例
|
||
print("类别比例和数量:")
|
||
for category, ratio in ratios.items():
|
||
print(f"类别 {category}: {ratio:.2f}% ({counts[category]} 条)")
|
||
|
||
# 绘制饼图
|
||
plt.figure(figsize=(8, 6))
|
||
plt.pie(ratios, labels=ratios.index, autopct='%1.1f%%', startangle=140)
|
||
plt.title('数据集类别比例')
|
||
plt.show()
|
||
return ratios
|
||
|
||
if __name__ == "__main__":
|
||
# input_file = "sftdata.jsonl"
|
||
input_file = "output-26.jsonl"
|
||
input_file = "G:\\11\\data-prepare\\arxiv-metadata-oai-snapshot-multi-batch1.json"
|
||
get_Composition_ratio(input_file)
|