71 lines
2.1 KiB
Python
71 lines
2.1 KiB
Python
import json
|
|
import random
|
|
|
|
input_file = "arxiv-metadata-oai-snapshot--ratio.json" # 20000条原始数据文件路径
|
|
output_file = "arxiv-metadata-oai-snapshot--swift.json"
|
|
|
|
# 类别对应选项映射
|
|
label_map = {
|
|
"astro-ph": "A",
|
|
"cond-mat.mes-hall": "B",
|
|
"cond-mat.mtrl-sci": "C",
|
|
"cs.CL": "D",
|
|
"cs.CV": "E",
|
|
"cs.LG": "F",
|
|
"gr-qc": "G",
|
|
"hep-ph": "H",
|
|
"hep-th": "I",
|
|
"quant-ph": "J"
|
|
}
|
|
|
|
options_text = (
|
|
"\n\nA. astro-ph\nB. cond-mat.mes-hall\nC. cond-mat.mtrl-sci\nD. cs.CL\n"
|
|
"E. cs.CV\nF. cs.LG\nG. gr-qc\nH. hep-ph\nI. hep-th\nJ. quant-ph"
|
|
)
|
|
|
|
# 读取所有数据
|
|
with open(input_file, 'r', encoding='utf-8') as f:
|
|
data = [json.loads(line) for line in f]
|
|
|
|
# 随机抽样1000条
|
|
#random.seed(42)
|
|
sampled = data
|
|
|
|
with open(output_file, 'w', encoding='utf-8') as f_out:
|
|
count = 0
|
|
for item in sampled:
|
|
# 多类别时取最后一个类别(通常以空格分割)
|
|
categories_str = item.get("categories", "").strip()
|
|
if not categories_str:
|
|
continue
|
|
last_category = categories_str.split()[-1]
|
|
|
|
if last_category not in label_map:
|
|
continue
|
|
|
|
title = item.get("title", "").replace("\n", " ").strip()
|
|
authors = item.get("authors", "").replace("\n", " ").strip()
|
|
abstract = item.get("abstract", "").replace("\n", " ").strip()
|
|
if not title or not authors or not abstract:
|
|
continue
|
|
|
|
human_text = (
|
|
f"Based on the title '{title}', authors '{authors}', and abstract '{abstract}', "
|
|
f"please determine the scientific category of this paper.{options_text}"
|
|
)
|
|
|
|
finetune_sample = {
|
|
"system": "你是个优秀的论文分类师",
|
|
"conversation": [
|
|
{
|
|
"human": human_text,
|
|
"assistant": label_map[last_category]
|
|
}
|
|
]
|
|
}
|
|
|
|
f_out.write(json.dumps(finetune_sample, ensure_ascii=False) + "\n")
|
|
count += 1
|
|
|
|
print(f"转换完成,共生成{count}条微调数据,保存到 {output_file}")
|