Files
data-prepare/05-data-swfit-sft2multi_type.py

375 lines
13 KiB
Python
Raw Normal View History

2025-07-19 12:48:51 +08:00
import json
import os
import argparse
import random
2025-07-19 12:48:51 +08:00
# 科学类别文本常量
CATEGORY_TEXT = """ A. quant-ph
B. physics.chem-ph
C. physics.atom-ph
D. cond-mat.soft
E. cs.RO
F. cs.CL
G. cs.SE
H. cs.IR
I. hep-th
J. hep-ph
K. physics.optics
L. cs.AI
M. cs.CV
N. nucl-th
O. astro-ph
P. math.PR
Q. cs.OS
R. eess.SP
S. math.OC
T. math.DS
U. math.DG
V. math.MP
W. cs.MM
X. stat.ME
Y. math.CO
Z. cs.NE
"""
# 问题模板常量
QUESTION_TEMPLATES = [
# 直接提问式
"{category_text}What is the scientific category for a paper titled '{title}', authored by {authors}, with abstract '{abstract}'?",
# 命令式
"Classify this paper into its scientific category based on title '{title}', authors '{authors}', and abstract '{abstract}'.{category_text}",
# 描述性引导
"{category_text}Given a research paper with title '{title}', authors {authors}, and abstract '{abstract}', identify the appropriate discipline.",
# 正式请求
"Please assign the scientific category for the paper: title '{title}', authors '{authors}', abstract '{abstract}'.{category_text}",
# 摘要优先
"Using the abstract '{abstract}', title '{title}', and authors '{authors}', determine the paper's category.{category_text}",
# 作者强调
"{category_text}From authors '{authors}', title '{title}', and abstract '{abstract}', what category does this paper fall into?",
# 问题链式
"Here's a paper: title '{title}', authors {authors}, abstract '{abstract}'. What is its scientific category?{category_text}",
# 简洁版
"Category for: title '{title}', authors '{authors}', abstract '{abstract}'?{category_text}",
# 上下文嵌入
"Considering the title '{title}', the authors '{authors}', and the abstract content '{abstract}', please specify the paper's field.{category_text}",
# 非正式口语
"Hey, what category is this paper? Title '{title}', by {authors}, abstract '{abstract}'.{category_text}",
# 元素罗列
"{category_text}Title: '{title}'. Authors: '{authors}'. Abstract: '{abstract}'. Now, what's the scientific category?",
# 假设场景
"If a paper has title '{title}', authors '{authors}', and abstract '{abstract}', which scientific category best fits it?{category_text}",
# 强调关键信息
"Based solely on the title '{title}', authors list '{authors}', and abstract text '{abstract}', categorize this paper.{category_text}",
# 间接询问
"For the paper '{title}' by {authors}, with abstract '{abstract}', could you indicate its scientific discipline?{category_text}",
# 完整句子整合
"Determine the category of the research paper entitled '{title}', written by {authors}, and summarized as '{abstract}'.{category_text}",
# 问题聚焦摘要
"The abstract '{abstract}' describes a paper titled '{title}' by authors '{authors}'. What category is it?{category_text}",
# 标题驱动
"{category_text}Starting from the title '{title}', and considering authors '{authors}' and abstract '{abstract}', what is the paper's category?",
# 多部分查询
"Part 1: Title is '{title}'. Part 2: Authors are '{authors}'. Part 3: Abstract is '{abstract}'. Based on this, classify the paper.{category_text}",
# 比较式
"Given the details: title '{title}', authors '{authors}', abstract '{abstract}', how would you categorize this paper scientifically?{category_text}",
# 行动导向
"Using the provided title '{title}', authors '{authors}', and abstract '{abstract}', output the scientific category for this paper.{category_text}"
]
2025-07-19 12:48:51 +08:00
def extract_title_author_and_abstract(content_text):
"""
content_text: 格式示例"Based on the title 'The Quantum Primordial Black Holes, Dimensionless Small Parameter, Inflationary Cosmology and Non-Gaussianity', authors 'Alexander Shalyt-Margolin', and abstract 'In the present work consideration is given to the primordial black holes ({\\bf pbhs}) in the Schwarzschild-de Sitter Metric with small mass (ultralight) in the preinflationary epoch. Within the scope of natural assumptions, it has been shown that the quantum-gravitational corrections ({\\bf qgcs}) to the characteristics of such black holes can contribute to all the cosmological parameters, shifting them compared with the semiclassical consideration. These contributions are determined by a series expansion in terms of a small parameter dependent on the hole mass (radius). For this pattern different cases have been considered (stationary, black hole evaporation...). It has been demonstrated that involvement of ({\\bf qgcs}) leads to a higher probability for the occurrence of such {\\bf pbhs}. Besides, high-energy deformations of Friedmann Equations created on the basis of these corrections have been derived for different patterns. In the last section of this work it is introduced a study into the contributions generated by the above-mentioned {\\bf qgcs} in inflationary cosmological perturbations. Besides, it has been shown that non-Gaussianity of these perturbations is higher as compared to the semi-classical pattern.', please determine the scientific category of this paper. Additional info: 35 pages, Latex ,
A. quant-ph\nB. physics.chem-ph\nC. physics.atom-ph\nD. cond-mat.soft\nE. cs.RO\nF. cs.CL\nG. cs.SE\nH. cs.IR\nI. hep-th\nJ. hep-ph\nK. physics.optics\nL. cs.AI\nM. cs.CV\nN. nucl-th\nO. astro-ph\nP. math.PR\nQ. cs.OS\nR. eess.SP\nS. math.OC\nT. math.DS\nU. math.DG\nV. math.MP\nW. cs.MM\nX. stat.ME\nY. math.CO\nZ. cs.NE", "assistant": "I"}]}}
2025-07-19 12:48:51 +08:00
"""
try:
#content_text.split("',")
parts = content_text.split("',")
if len(parts) < 3:
# 如果分割后的部分少于3个返回默认值
return {"title": "", "authors": "", "abstract": ""}
# 安全地提取标题
title_parts = parts[0].split("'")
if len(title_parts) >= 2:
title = title_parts[1].strip()
else:
title = ""
# 安全地提取作者
authors_parts = parts[1].split("'")
if len(authors_parts) >= 2:
authors = authors_parts[1].strip()
else:
authors = ""
# 安全地提取摘要
abstract_parts = parts[2].split("'")
if len(abstract_parts) >= 2:
abstract = abstract_parts[1].strip()
else:
abstract = ""
return {"title": title, "authors": authors, "abstract": abstract}
except Exception as e:
# 如果出现任何异常,返回默认值
print(f"解析内容时出错: {e}")
return {"title": "", "authors": "", "abstract": ""}
2025-07-19 12:48:51 +08:00
def parse_new_format_data(data):
"""
解析新格式的数据
Args:
data: 新格式的JSON数据
Returns:
tuple: (system_instruction, human_content, assistant_content) (None, None, None)
"""
if "messages" not in data or not isinstance(data["messages"], list) or len(data["messages"]) < 3:
return None, None, None
system_instruction = ""
human_content = ""
assistant_content = ""
for msg in data["messages"]:
if msg["role"] == "system":
system_instruction = msg["content"]
elif msg["role"] == "user":
human_content = msg["content"]
elif msg["role"] == "assistant":
assistant_content = msg["content"]
return system_instruction, human_content, assistant_content
2025-07-19 12:48:51 +08:00
def parse_old_format_data(data):
"""
解析旧格式的数据
Args:
data: 旧格式的JSON数据
Returns:
tuple: (system_instruction, conversation_data) (None, None)
"""
if "system" not in data or "conversation" not in data or not data["conversation"]:
return None, None
system_instruction = data.get("system", "根据论文的标题、作者和摘要,确定该论文的科学类别。")
return system_instruction, data["conversation"]
2025-07-19 12:48:51 +08:00
def generate_multi_type_samples(title, authors, abstract, system_instruction, assistant_content, num_templates):
"""
根据模板生成多种类型的样本
Args:
title: 论文标题
authors: 作者
abstract: 摘要
system_instruction: 系统指令
assistant_content: 助手回复
num_templates: 使用的模板数量
Returns:
list: 生成的多种类型数据列表
"""
n = min(num_templates, len(QUESTION_TEMPLATES))
selected_templates = random.sample(QUESTION_TEMPLATES, n)
samples = []
for template in selected_templates:
formatted_question = template.format(
title=title,
authors=authors,
abstract=abstract,
category_text=CATEGORY_TEXT
)
new_data = {
"messages": [
{"role": "system", "content": system_instruction},
{"role": "user", "content": formatted_question},
{"role": "assistant", "content": assistant_content}
]
}
samples.append(new_data)
return samples
2025-07-19 12:48:51 +08:00
def process_new_format_data(data, num_templates):
"""
处理新格式数据
Args:
data: 新格式数据
num_templates: 模板数量
Returns:
list: 处理后的数据列表
"""
system_instruction, human_content, assistant_content = parse_new_format_data(data)
if not human_content:
return []
extracted = extract_title_author_and_abstract(human_content)
title = extracted.get("title", "")
authors = extracted.get("authors", "")
abstract = extracted.get("abstract", "")
return generate_multi_type_samples(title, authors, abstract, system_instruction, assistant_content, num_templates)
def process_old_format_data(data, num_templates):
"""
处理旧格式数据
Args:
data: 旧格式数据
num_templates: 模板数量
Returns:
list: 处理后的数据列表
"""
system_instruction, conversation_data = parse_old_format_data(data)
if not conversation_data:
return []
samples = []
for turn in conversation_data:
if "human" not in turn or "assistant" not in turn:
continue
extracted = extract_title_author_and_abstract(turn["human"])
title = extracted.get("title", "")
authors = extracted.get("authors", "")
abstract = extracted.get("abstract", "")
n = min(num_templates, len(QUESTION_TEMPLATES))
selected_templates = random.sample(QUESTION_TEMPLATES, n)
for template in selected_templates:
formatted_question = template.format(
title=title,
authors=authors,
abstract=abstract,
category_text=CATEGORY_TEXT
)
new_data = {
"system": system_instruction,
"conversation": [
{
"human": formatted_question,
"assistant": turn["assistant"]
}
]
}
samples.append(new_data)
return samples
2025-07-19 12:48:51 +08:00
def convert_onedata2multi_type(input_file, output_file, num_templates):
2025-07-19 12:48:51 +08:00
"""
读取input_file将Swift格式的1条数据按多种问题模板格式转换为多条数据
2025-07-19 12:48:51 +08:00
并保存为output_file
参数:
input_file: 输入文件路径
output_file: 输出文件路径
num_templates: 每条数据生成的模板数量
2025-07-19 12:48:51 +08:00
"""
print(f"开始转换数据...每条数据生成{num_templates}条变体")
2025-07-19 12:48:51 +08:00
print(f"开始转换数据: {input_file} -> {output_file}")
multi_type_data = []
with open(input_file, "r", encoding="utf-8") as f:
for line_num, line in enumerate(f, 1):
2025-07-19 12:48:51 +08:00
try:
data = json.loads(line.strip())
# 处理新格式数据
if "messages" in data:
samples = process_new_format_data(data, num_templates)
multi_type_data.extend(samples)
# 处理旧格式数据
elif "system" in data and "conversation" in data:
samples = process_old_format_data(data, num_templates)
multi_type_data.extend(samples)
else:
print(f"警告: 第{line_num}行数据格式不识别: {data}")
continue
2025-07-19 12:48:51 +08:00
except json.JSONDecodeError:
print(f"警告: 第{line_num}行无法解析JSON: {line}")
2025-07-19 12:48:51 +08:00
except Exception as e:
print(f"处理第{line_num}行时发生错误: {str(e)}")
2025-07-19 12:48:51 +08:00
# 写入输出文件
with open(output_file, "w", encoding="utf-8") as f:
for item in multi_type_data:
f.write(json.dumps(item, ensure_ascii=False) + "\n")
print(f"转换完成! 共转换 {len(multi_type_data)} 条数据")
if __name__ == "__main__":
# 示例用法
input_file = "G:\\11\\data-prepare\\arxiv-metadata-oai-snapshot--swift-26-500.jsonl"
output_file = "G:\\11\\data-prepare\\arxiv-metadata-oai-snapshot--swift-26-500-m+.jsonl"
convert_onedata2multi_type(input_file, output_file, num_templates=1)
2025-07-19 12:48:51 +08:00