data-prepare/05-data-swfit-xtuner.py

87 lines
2.9 KiB
Python
Raw Normal View History

import json
import os
import argparse
def convert_to_alpaca_format(input_file, output_file):
"""
Swift 格式的数据转换为 Alpaca 格式
输入格式:
{
"system": "你是个优秀的论文分类师",
"conversation": [
{
"human": "Based on the title...",
"assistant": "D"
}
]
}
输出格式 (Alpaca):
{
"instruction": "根据论文的标题、作者和摘要,确定该论文的科学类别。",
"input": "Based on the title...",
"output": "D"
}
"""
print(f"转换数据: {input_file} -> {output_file}")
converted_data = []
with open(input_file, "r", encoding="utf-8") as f:
for line in f:
try:
data = json.loads(line.strip())
# 检查数据结构
if "system" not in data or "conversation" not in data:
print(f"警告: 数据缺少必要字段: {data}")
continue
# 从 system 提取指令
instruction = data.get("system", "")
if not instruction:
instruction = "根据论文的标题、作者和摘要,确定该论文的科学类别。"
# 处理对话
for turn in data["conversation"]:
if "human" in turn and "assistant" in turn:
# 创建新的 Alpaca 格式数据
new_data = {
"instruction": instruction,
"input": turn["human"],
"output": turn["assistant"],
}
converted_data.append(new_data)
except json.JSONDecodeError:
print(f"警告: 无法解析JSON行: {line}")
except Exception as e:
print(f"处理行时发生错误: {str(e)}")
# 写入输出文件
with open(output_file, "w", encoding="utf-8") as f:
for item in converted_data:
f.write(json.dumps(item, ensure_ascii=False) + "\n")
print(f"转换完成! 共转换 {len(converted_data)} 条数据")
if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="转换数据到Alpaca格式")
# parser.add_argument(
# "--input",
# type=str,
# required=True,
# help="输入文件路径 (swift_formatted_sft_train_data.jsonl)",
# )
# parser.add_argument("--output", type=str, required=True, help="输出文件路径")
# args = parser.parse_args()
#input_file = "arxiv-metadata-oai-snapshot--random.json" # 20000条原始数据文件路径
input_file = "arxiv-metadata-oai-snapshot--swift.json"
output_file = "arxiv-metadata-oai-snapshot--xtuner.jsonl" # 输出文件路径
convert_to_alpaca_format(input_file, output_file)